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Message from the General Chair

Welcome to the IJCNLP-AACL 2023 Student Research Workshop (SRW)!

The IJCNLP-AACL 2023 SRW is held in conjunction with the 13th International Joint Conference
on Natural Langauge Processing (IJCNLP) and the 3rd Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics (AACL)

The IJCNLP-AACL 2023 SRW provides a forum for student researchers who are investigating various
areas related to Computational Linguistics and Natural Language Processing. The workshop provides
an excellent opportunity for student participants to present their work and receive valuable feedback
from the international research community as well as from selected mentors - experienced researchers,
specifically assigned according to the topic of their work, who will prepare in-depth comments and
questions in advance of the presentation. The workshop’s goal is to aid students at multiple stages
of their education: including undergraduate, master’s, junior, and senior PhD students. This year’s
IJCNLP-AACL SRW raise a theme of understanding language models, which is reflected in the choice
of our keynote speaker (Tom McCoy).

The submissions were organized into two categories, that are general research papers and thesis
proposals, following the tradition established by the previous SRWs:

• General research papers: Papers in this category can describe completed work, or work in
progress with preliminary results. For these papers, the first author must be a current graduate
or undergraduate student.

• Thesis proposals: This category is appropriate for advanced students who have decided on a thesis
topic and wish to get feedback on their proposal and broader ideas for their continuing work.

We received a total of 29 submissions: 27 general research papers and 2 thesis proposal. We accepted
11 general research papers and 2 thesis proposal, resulting in an overall acceptance rate of 45%. The
decision-making process was competitive, but we were delighted that all accepted submissions have great
creativity and make contributions to their fields. The accepted submissions are diverse not only in topics
but also in terms of student demographics. Following the tradition established by the previous SRWs,
we also provided the pre-submission mentoring program for participants. The mentoring program offers
students the opportunity to get feedback by a mentor prior to submitting their work for review. There are
5 papers participated in the pre-submission mentoring program.

We would like to thank the pre-submission mentors that spend their time and effort to help improve the
work of the student authors. We would also like to thank all members of the program committee for their
in-depth, detailed review and constructive suggestions for each submission. We are especially grateful
to all the emergency reviewers who provide timely support and submit their high-quality feedback.

Preparing a workshop is never an easy business. Thanks to Hyeju Jang, Yugo Murawaki, and Derek Fai
Wong, who act as the faculty advisors for this year’s workshop. Special thanks to Vishakh Padmakumar
and Gisela Vallejo, two of the co-chairs of ACL 2023 SRW, and Hanqi Yan, one of the co-chairs of the
IJCNLP-AACL 2022 SRW, who shared their invaluable experience in preparing the workshop. We are
also grateful to Derry Wijaya for her constant and timely guidance. A huge shout out to Tom McCoy,
who agreed to give the SRW keynote. We sincerely appreciate all of the organizers of the IJCNLP-AACL
conference for their effort. And of course, we would like to thank all the student authors and participants
who submitted their work to the workshop. This workshop cannot be successful without any of them.

We hope you enjoy the IJCNLP-AACL 2023 SRW!
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Abstract

While structure learning achieves remarkable
performance in high-resource languages, the
situation differs for under-represented lan-
guages due to the scarcity of annotated data.
This study focuses on assessing the efficacy
of transfer learning in enhancing dependency
parsing for Javanese—a language spoken by 80
million individuals but characterized by limited
representation in natural language processing.
We utilized the Universal Dependencies dataset
consisting of dependency treebanks from more
than 100 languages, including Javanese. We
propose two learning strategies to train the
model: transfer learning (TL) and hierarchi-
cal transfer learning (HTL). While TL only
uses a source language to pre-train the model,
the HTL method uses a source language and
an intermediate language in the learning pro-
cess. The results show that our best model uses
the HTL method, which improves performance
with an increase of 10 % for both UAS and LAS
evaluations compared to the baseline model.

1 Introduction

Despite over 80 million native speakers of Javanese
(Simons et al., 2023), this language is underrepre-
sented in NLP due to a scarcity of annotated re-
sources. Limited works in Javanese have focused
on stemmer (Soyusiawaty et al., 2020), POS tag-
ger (Askhabi et al., 2020), sentiment analysis (Tho
et al., 2021), and machine translation (Lesatari
et al., 2021). However, few have explored language
structure prediction, such as dependency parsing.
Dependency parsing is a process that makes a struc-
tural representation of a sentence (Kübler et al.,
2009) that produces a structure in the form of a
dependency tree represented in a graph consisting
of several connected links between words in a sen-
tence.

Recent work, Alfina et al. (2023) created a pub-
lic gold standard dataset for Javanese with 1000
sentences, published as part of the Universal Depen-

dencies dataset (Zeman et al., 2023). This dataset
covers annotation for tokenization, POS tagging,
morphological features tagging, and dependency
parsing tasks. The most recent parser performance
(Alfina et al., 2023) using this dataset is not satisfac-
tory, with only 77.08% on Unlabeled Attachment
Score (UAS) and 71.21% on Labeled Attachment
Score (LAS). The lack of training data is a typ-
ical low-resource problem considered one of the
biggest NLP research problems (Ruder, 2023).

Transfer learning (TL) involves leveraging a
model’s knowledge from a high-resource source
domain to improve performance on various NLP
tasks, particularly in low-resource domains (Weiss
et al., 2016), by transferring learned information to
target tasks. Inspired by Maulana et al. (2022) that
utilizes cross-lingual transfer learning to develop
an Indonesian dependency parser, we want to try
to replicate its outcome in Javanese with a limited
available dataset. Moreover, we also implement hi-
erarchical transfer learning (HTL) with two stages
of transfer learning that offer increased flexibility
over TL by enabling knowledge transfer between
languages with a significant gap (Luo et al., 2019),
as demonstrated in diverse applications, including
Javanese text-to-speech (Azizah et al., 2020) and
biomedical named entity recognition models (Chai
et al., 2022).

We build the dependency parser model for Ja-
vanese by adopting model (Ahmad et al., 2019) that
uses a self-attention encoder and a graph-based de-
coder. We utilize the Universal Dependency dataset
v1.12 (Zeman et al., 2023) that provides depen-
dency treebanks for more than 100 languages, in-
cluding Javanese. Both TL and HTL use a selection
of source languages determined by LangRank (Lin
et al., 2020). Specifically, HTL employs Indone-
sian as an intermediary language, developing from
our referenced research (Maulana et al., 2022). The
empirical results show that transfer learning im-
proves accuracy with a margin of 10% compared to
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the baseline. We also report the word embedding
comparison that fastText performs better than the
Javanese BERT, Javanese RoBERTa, and multilin-
gual BERT. In summary, the main contributions of
this paper are as follows:

1. Provide the first study of Javanese dependency
parsing using TL and HTL strategy. We re-
port that the HTL method can significantly
improve performance compared to the train-
ing from scratch method.

2. Report the investigation of which source lan-
guage and word embedding performs best for
TL and HTL strategy.

2 Related Works

2.1 Dependency Parser
The dependency parser model can be developed
using two methods, the transition-based and graph-
based methods (Das and Sarkar, 2020). The
transition-based method works by processing the
word order one by one in a given sentence (Martin.,
2020). Meanwhile, the graph-based method gives
a score to each edge of the word relation (Martin.,
2020), then looks for the best tree formed from the
edges with the best scores.

Apart from these two methods, there is an ap-
proach in which the parser is built using an encoder-
decoder architecture. It was first developed using
a BiLSTM encoder and a deep biaffine decoder
(Dozat and Manning, 2017). Encoder variations be-
gan to develop using Transformers or self-attention
encoders (Vaswani et al., 2017), then subsequent
studies modified it using relative positional em-
bedding (Shaw et al., 2018). The first Javanese
dependency parser (Alfina et al., 2023) uses UD-
Pipe (Straka, 2018), which also utilizes the biaffine
attention mentioned before.

In the context of transfer learning, it was found
that the best combination is a self-attention encoder
and a graph-based decoder (Ahmad et al., 2019),
which will be used in this research. This combi-
nation has been better than other encoder-decoder
combinations in cross-lingual transfer learning.

2.2 Transfer Learning
Transfer learning involves leveraging a pre-trained
model’s knowledge to enhance the performance
of other models (Sarkar and Bali, 2022), address-
ing resource limitations in low-resource domains.
Besides that, hierarchical transfer learning offers

a transfer learning method in which a new layer
is added before the model is transferred to the
low-resource language (Luo et al., 2019). Recent
work has shown that transferring multiple times
could minimize the dissimilarity between the high-
resource and the low-resource domain languages
(Azizah et al., 2020).

Transfer learning strategy offers direct capability,
which means a model is trained on a source task
and then applied without any labeled data from the
target task. Specifically on the parsing task, pre-
vious research already done by Kurniawan et al.
(2021) and Ahmad et al. (2019) for developing an
unsupervised parsing model in several languages
using only English as its source language. That ap-
proach can be improved by adding fine-tuning with
the available small dataset from low-resource lan-
guage. Recent work (Maulana et al., 2022) shows
the fine-tuning approach is better than the zero-
shot one for building a parsing model in another
low-resource language, Indonesian.

3 Method

This section concerns the model’s architecture with
the addition of the transfer learning method, the
dataset and word embedding used to train the
model, and the evaluation method of how the model
is evaluated.

3.1 Model Architecture

This work uses an encoder-decoder architecture of
Ahmad et al. (2019). No parameter modifications
were made to maintain the success of the previous
work. Because training and fine-tuning the model
involves resources from several different languages,
only language-independent labels are used where
the subtype of the label is not involved.

3.1.1 Encoder

We convert the words and POS tags from the sen-
tence into their embedding form. The self-attention
encoder (Vaswani et al., 2017) in this study re-
ceived an embedding matrix, which concatenates
the word and POS embedding matrices. The en-
coder produces two matrices, M and N . M matrix
represents the probability of a word in column j
having the head of a word in row i. In comparison,
the N matrix represents the probability of a word
in column j having a label in row i.
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3.1.2 Decoder
The decoder receives the two matrices and pro-
cesses them in two following processes. First, M
is processed with the maximum spanning tree algo-
rithm in the following way:

Let G = (V,E) be a graph constructed using
directed weighted graph M . In this case, a vertex
is a word representation, and an edge represents the
dependency score of the two words. Let w : E →
R be a function that assigns a weight to each edge
in E. Then, the maximum spanning tree problem
seeks to find a spanning tree T = (V,ET ) of G
such that:

T = argmax
T ′

∑

e∈ET ′

w(e) (1)

subject to the constraint that T is a tree. Then, a
list of head H is generated from all the destination
nodes in ET . It can be denoted as:

H = {di | ∃(si, di) ∈ ET }, i = 1, . . . , n (2)

Meanwhile, N is processed to generate L, con-
taining the list of labels with the highest probability
for each word. Finally, the H and L arrays are used
to build the final resulting tree from this model.

3.1.3 Word Embedding
This research used two types of word embedding
approaches: the static type in the form of fastText
and the contextual type in the form of BERT. The
two types were selected to compare which type was
most suitable for the Javanese parser model.

We chose fastText because of the similarity with
that used in the previous research (Maulana et al.,
2022). We also used BERT with two scenarios:
using a different word embedding for each lan-
guage (BERT and RoBERTa) and only one word
embedding for all languages (multilingual BERT).
The BERT and RoBERTa scenario uses all the lan-
guages involved except Croatian due to the unavail-
able resources.

3.2 Training Method
We perform two training methods: transfer learning
and hierarchical transfer learning. Each method
generates several models based on the number of
source languages used. All models are fine-tuned
with the Javanese treebank.

Standard transfer learning only uses one transfer
stage from high-resource to low-resource language,

Figure 1: Illustration of standard transfer learning
method

Figure 2: Illustration of hierarchical transfer learning
method

as shown in Figure 1. Meanwhile, Figure 2 il-
lustrates a hierarchical transfer learning scenario,
where transferring stages are performed twice in hi-
erarchical transfer learning. The first stage is done
from a high-source language to an intermediate-
resource language, and the second stage is done
from an intermediate-resource language to a low-
resource language.

3.3 Choosing Source Languages
Some languages are selected as source languages
using the help of LangRank (Lin et al., 2020) and
references from previous studies. This tool con-
siders combining two main feature groups in each
language pair: corpus statistics and typological in-
formation.

3.4 Dataset
3.4.1 The Javanese dataset
For the Javanese dataset, we use the only Javanese
treebank available in the UD dataset v2.12, the
UD_Javanese-CSUI (Alfina et al., 2023). Table 1
shows the statistics of this dataset. The set available
for UD_Javanese-CSUI is only a test set because
the data size is still relatively small. We do our
split process by following the distribution rule of
the data into train, dev, and test sets by 80%, 10%,
and 10% percentages.
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Table 1: The statistics of the Javanese treebank

Description Statistic

Sentence count 1000
Word count 14344
Unique word count 3793
Average sentence length (in words) 14.32
Universal Part-of-Speech (UPOS) tag count 17
Universal dependency relation count 32
Language-specific dependency relation count 14
Total dependency relation count 46

Table 2: List of treebanks chosen for source languages,
with their corresponding size in the number of sentences
and words

Treebank Sentences Words

UD_Croatian-SET (Agic and Ljubesic, 2015) 9010 199409
UD_English-GUM (Zeldes, 2017) 9124 164396
UD_French-GSD (McDonald et al., 2013) 16341 400232
UD_Indonesian-GSD (McDonald et al., 2013) 5598 122021
UD_Italian-ISDT (Bosco et al., 2022) 14167 298343
UD_Korean-GSD (Chun et al., 2019) 6339 80322

3.4.2 The source language dataset
Langrank recommends the top 3 languages in the
following order: Indonesian, Croatian, and Ko-
rean. We also use English, one of the important
languages in NLP research. These four languages
are used in the standard transfer learning scenario.

For the hierarchical transfer learning scenario
using Indonesian as the intermediary language, we
choose English, French, and Italy as the source
languages suggested by Maulana et al. (2022). In
total, we use six languages as the source languages.

For each source language, we only use one tree-
bank. If a language has more than one treebank in
the UD dataset v2.12, we choose the treebank with
the biggest size, as shown in Table 2.

3.5 Experiments Setting

3.5.1 Scenarios
As explained in Section 3.2, we conducted three
main scenarios:

1. Training from scratch (FS) or baseline sce-
nario, in which the models are trained only
using the target language, Javanese.

2. Standard transfer learning (TL). We construct
four distinct models utilizing treebanks from
each source language. Then, each model is
fine-tuned using the Javanese treebank.

3. Hierarchical transfer learning (HTL). First,
we train three different models using treebank

from each source language. After that, the
models were fine-tuned with the Indonesian
treebank before being fine-tuned again with
the Javanese treebank.

We also compared the performance of the four
types of word embeddings for Javanese: fastText
(Grave et al., 2019), Javanese BERT (Wongso et al.,
2021), Javanese RoBERTa (Wongso et al., 2021),
and multilingual BERT (Devlin et al., 2019).

3.5.2 Environment
Implementation is done in Python environments.
The training process is supported by the NVIDIA-
DGX server with GPU NVIDIA A100 10GB,
RAM of 64GB, and storage of 1 TB.

3.6 Evaluation

All models are evaluated using the unlabeled attach-
ment score (UAS) and labeled attachment score
(LAS) metrics, which are the most frequently
used for evaluating the dependency parsing model
(Nivre and Fang, 2017). The margin of error
(MOE) with a 95% confidence level is also used to
estimate the range of values within which the true
population value is likely to fall.

4 Result and Analysis

The evaluation results for all scenarios are shown
in Table 3. Scores in bold are marked as the best
model in a particular word embedding type metric.

4.1 Models Comparison: From Scratch (FS)
Model, Transfer Learning (TL) Model,
and Hierarchical Transfer Learning
(HTL) Model

Table 3 shows that the transfer learning model per-
forms better than the baseline model in all word
embeddings. The performance increase is quite
significant, up to 13% on UAS and 14% on LAS.
This verifies previous studies which explain the
advantages of using transfer learning (Sarkar and
Bali, 2022). The lack of resources in Javanese also
indicates that transfer learning is suitable for use.

Figure 3 also shows that the hierarchical trans-
fer learning method consistently outperforms the
transfer learning method even though it is not too
significant. Specifically, the comparison focused on
the TL-ID and HTL models, as all models from the
HTL scenario use the TL-ID model as its second
base for the transferring method. The difference
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Table 3: Evaluation results of all scenarios

Word Embedding Model UAS LAS

fastText

FS 75.87 ± 2.21 68.97 ± 2.39

TL-ID 84.80 ± 1.85 78.10 ± 2.14
TL-HR 83.40 ± 1.92 76.57 ± 2.19
TL-KO 80.68 ± 2.04 74.13 ± 2.26
TL-EN 83.47 ± 1.92 77.27 ± 2.16

HTL-EN-ID 84.94 ± 1.85 79.22 ± 2.10
HTL-FR-ID 84.87 ± 1.85 77.55 ± 2.15
HTL-IT-ID 85.84 ± 1.80 78.87 ± 2.11

jv-BERT

FS 74.69 ± 2.25 67.29 ± 2.42

TL-ID 79.08 ± 2.10 72.32 ± 2.31
TL-HR - -
TL-KO 77.06 ± 2.17 70.29 ± 2.36
TL-EN 81.73 ± 2.00 75.52 ± 2.22

HTL-EN-ID 83.47 ± 1.92 76.64 ± 2.19
HTL-FR-ID 81.80 ± 1.99 75.38 ± 2.22
HTL-IT-ID 81.03 ± 2.02 73.99 ± 2.27

jv-RoBERTa

FS 69.80 ± 2.37 62.97 ± 2.49

TL-ID 78.45 ± 2.12 72.11 ± 2.32
TL-HR - -
TL-KO 82.22 ± 1.97 76.22 ± 2.20
TL-EN 77.13 ± 2.17 70.92 ± 2.35

HTL-EN-ID 77.41 ± 2.16 70.85 ± 2.35
HTL-FR-ID 83.05 ± 1.94 77.20 ± 2.17
HTL-IT-ID 83.33 ± 1.92 77.20 ± 2.17

multi-BERT

FS 75.80 ± 2.21 69.04 ± 2.39

TL-ID 82.01 ± 1.98 76.01 ± 2.21
TL-HR 83.75 ± 1.90 77.68 ± 2.15
TL-KO 79.78 ± 2.07 73.29 ± 2.28
TL-EN 80.89 ± 2.03 74.13 ± 2.26

HTL-EN-ID 82.98 ± 1.94 76.71 ± 2.18
HTL-FR-ID 83.19 ± 1.93 77.75 ± 2.15
HTL-IT-ID 84.45 ± 1.87 78.52 ± 2.12

Figure 3: Comparison of the best model evaluation for
each scenario

Figure 4: Comparison of the best model evaluation for
each word embedding

between these two scenarios shows that adding suit-
able high-resource language for the initial source
model can give a better performance.

4.2 Source Languages Comparison

Table 3 shows that two of the top three recommen-
dations from LangRank have good results. The
conclusion is that LangRank can help predict the
source language in the Javanese dependency parser.
However, it does not rule out the possibility that
other languages also have good results. For TL,
it cannot be concluded which source language
achieves the best performance since different word
embedding used by the model gives different re-
sults. For HTL using Indonesian as the interme-
diate language, Italy performs best, followed by
English as the source language.

4.3 Word Embeddings Comparison

Figure 4 shows that the model with a higher UAS
score was obtained from word embedding fastText,
followed by multilingual BERT, Javanese BERT,
and Javanese RoBERTa. For LAS evaluation, the
sequence is fastText, multilingual BERT, Javanese
RoBERTa, and Javanese BERT. Although fastText
is slightly superior, the differences are insignificant
when considering the models’ margin of error.
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Table 4: Top 10 errors of the from-scratch model and its
comparison with the transfer-learning model

Ground Truth Prediction FS TL HTL

obl obj 17 16 15
obl nsubj 7 3 7
obj obl 7 13 12

advcl xcomp 5 5 6
nmod flat 4 2 1
xcomp advcl 4 5 5
xcomp obl 3 3 2
nmod obl 3 1 1
nsubj obj 3 1 1
obj nsubj 2 0 3

4.4 Error Analysis

Table 4 displays more detail about the performance
difference. The ten labels taken are obtained from
pairs with the highest errors in the from-scratch
model. Some pairs significantly reduce error, but
there are also pairs with no significant changes
and even more errors in scenarios with transfer
learning.

One noteworthy insight is the significantly in-
creasing error of words with "obj" label that pre-
dicted with "obl". It seems contradictory that model
accuracy is increasing simultaneously with the ad-
dition of transfer learning. It turns out that there are
a few differences in the word labeling of both labels
between the source and the target language, so the
model could not predict the word label correctly.

5 Conclusions and Future Work

This section explains the conclusion and improve-
ments that can be developed from this work.

5.1 Conclusions

This work investigates whether cross-lingual trans-
fer learning works for dependency parsing tasks
of a low-resource language, Javanese. The result
shows that the cross-lingual transfer learning model
is significantly better than the baseline model. Mod-
els with transfer learning can improve performance
on UAS and LAS metrics by up to 10%.

The best model was obtained from the hierar-
chical transfer learning method using Italian and
English as the source and Indonesian as the interme-
diary languages. Meanwhile, the standard transfer
learning method achieved the best accuracy using
Indonesian as the source language. However, the

differences between standard transfer learning and
hierarchical learning are insignificant, considering
the margin of error from each scenario.

5.2 Future Work

We focused more on the model’s learning scheme
than the model’s development with the highest
score. We use architecture from Dozat and Man-
ning (2017) rather than the one built by Mrini et al.
(2020), the state-of-the-art dependency parsing task.
So, better architecture can be used to produce a
model with a higher evaluation score in the future.

Our future works also include further error anal-
ysis, especially related to the languages involved
that LangRank chose. It could investigate lan-
guages with different demography and characteris-
tics (Croatian and Korean) compared to Javanese.

Limitations

The following are the limitations of this research:

1. There is no hyper-parameter tuning treatment
in the model creation process.

2. Cross-validation is not performed in the data
distribution process.

3. Only one language is used as an intermediary
language in hierarchical transfer learning.
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Bjarnadóttir, Rogier Blokland, Victoria Bobicev,
Loïc Boizou, Emanuel Borges Völker, Carl Börstell,
Cristina Bosco, Gosse Bouma, Sam Bowman, Adri-
ane Boyd, Anouck Braggaar, António Branco,
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Bernadeta Griciūtė, Matias Grioni, Loïc Grobol, Nor-
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Jolanta Kovalevskaitė, Simon Krek, Parameswari Kr-
ishnamurthy, Sandra Kübler, Adrian Kuqi, Oğuzhan
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Larraitz Uria, Hans Uszkoreit, Andrius Utka, Elena
Vagnoni, Sowmya Vajjala, Socrates Vak, Rob van der
Goot, Martine Vanhove, Daniel van Niekerk, Gert-
jan van Noord, Viktor Varga, Uliana Vedenina,
Giulia Venturi, Veronika Vincze, Natalia Vlasova,
Aya Wakasa, Joel C. Wallenberg, Lars Wallin, Abi-
gail Walsh, Jonathan North Washington, Maximilan
Wendt, Paul Widmer, Shira Wigderson, Sri Hartati
Wijono, Seyi Williams, Mats Wirén, Christian Wit-
tern, Tsegay Woldemariam, Tak-sum Wong, Alina
Wróblewska, Mary Yako, Kayo Yamashita, Naoki
Yamazaki, Chunxiao Yan, Koichi Yasuoka, Marat M.
Yavrumyan, Arife Betül Yenice, Olcay Taner Yıldız,
Zhuoran Yu, Arlisa Yuliawati, Zdeněk Žabokrtský,
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Abstract

Machine translation models are still inappro-
priate for translating chats, despite the popu-
larity of translation software and plug-in appli-
cations. The complexity of dialogues poses
significant challenges and can hinder cross-
lingual communication. Instead of pursuing
a flawless translation system, a more practical
approach would be to issue warning messages
about potential mistranslations to reduce con-
fusion. However, it is still unclear how indi-
viduals perceive these warning messages and
whether they benefit the crowd. This paper
tackles to investigate this question and demon-
strates the warning messages’ contribution to
making chat translation systems effective.

1 Introduction

Globalization has led to the popularity of neural ma-
chine translation (Bahdanau et al., 2014; Vaswani
et al., 2017; Gehring et al., 2017). Applications
like Google Translate1 and DeepL2 have become
essential tools in people’s lives (Medvedev, 2016;
Patil and Davies, 2014). Chat software such as
WeChat and LINE also integrates built-in transla-
tion features to facilitate cross-lingual communi-
cation. Plug-in translating applications like UD
Talk3 and Hi Translate4 have become popular as
well with the rise of online communication.

However, while machine translation technolo-
gies have demonstrated sound performance in trans-
lating documents (Barrault et al., 2019, 2020;
Nakazawa et al., 2019; Ma et al., 2020; Maruf
and Haffari, 2018), current methods are not always
suitable for translating conversations (Uthus and
Aha, 2013), especially colloquial dialogues such
as chats (Läubli et al., 2018; Toral et al., 2018;

∗ Currently affiliated with Machine Learning Solutions
Inc.

1https://translate.google.com/
2https://www.deepl.com/translator
3https://udtalk.jp/
4https://bit.ly/3pWhz9T

Farajian et al., 2020; Liang et al., 2021a). When a
translation system generates erroneous translations,
people unable to read the other language may not
recognize such errors, leading to confusion.

Achieving a perfect error-free chat translation
system is challenging due to the unique charac-
teristics of chat (Tiedemann and Scherrer, 2017;
Maruf et al., 2018; Liang et al., 2021a,b), mak-
ing it impractical to aim for perfection. Instead, a
viable alternative approach is to enhance transla-
tion software by providing warnings about possible
mistranslations to reduce confusion. However, the
perception and effects of such warning messages
remain unclear. To investigate this, we proposed to
provide a warning message for erroneous transla-
tions during the cross-lingual chat and conducted
a survey to explore how such warnings help peo-
ple communicate. The survey design is shown in
Figure 1. Participants engage in a simulated cross-
lingual chat scenario, where they have to select
the most reasonable response from three options.
Whenever a translation error occurs, a warning mes-
sage is displayed. At the end of the chat, partic-
ipants answer corresponding questions regarding
their perceptions of the warning messages.

We conducted the survey and collected responses
through crowdsourcing. The results indicate that
warning messages (1) are helpful in cross-lingual
chats and (2) potentially encourage users to change
their chat behavior. Moreover, the survey reveals
the crowd’s desired features for the warning mes-
sages. This is the first study of its kind to explore
the impacts of warning users about erroneous trans-
lations in cross-lingual chat. The findings are valu-
able for developing an assistant function that de-
tects and warns users of erroneous chat translations.

2 Related Work

Previous studies have pointed out the potential ben-
efits of incorporating machine translation in chat,
despite its imperfections (Uthus and Aha, 2013).
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Figure 1: An illustration of the designed survey. Participants will engage in two rounds of chat in the survey: one
without warning messages (left) and one with warning messages (right). The content and response options are the
same in both rounds. The order of the two rounds, either "without-with" (solid line) or "with-without" (dotted line),
will be randomly assigned to participants.

Several researchers have trained models using dif-
ferent methods to enhance chat translation perfor-
mance (Maruf et al., 2018; Farajian et al., 2020;
Liang et al., 2021a). However, features such as
ambiguity, omissions, and multi-speakers make
it challenging to improve translation accuracy in
chat (Tiedemann and Scherrer, 2017; Liang et al.,
2021a,b). In contrast to existing studies of train-
ing chat translation models, we focus on acknowl-
edging the imperfect nature of machine transla-
tion (Uthus and Aha, 2013) and aim to enhance
people’s experience of chat translation through an
alternative approach. We propose the warning mes-
sage of erroneous translation and thus improve peo-
ple’s experience in cross-lingual chat. A chat trans-
lation error detector discussed in a recent study
provides a binary assessment of the coherence and
correctness of chat translations (Li et al., 2022b).
If the error detector’s predictions are transformed
into warning messages, our survey could be instru-
mental in assessing the error detector’s practical
effectiveness. To the best of our knowledge, the
study is the first to investigate the crowd’s accep-
tance of such chat translation error detection tasks.

3 Survey Design

We propose an alternative strategy to improve trans-
lation software’s performance by integrating cau-
tionary alerts for potential mistranslations to reduce
confusion. We designed a warning message and
executed a survey to evaluate its effectiveness. Fig-

ure 1 illustrates the survey process, including two
simulated chat rounds: one devoid of warning mes-
sages and the other incorporating them.

3.1 Simulated Cross-lingual Chat Scenarios

Since dynamic real-time chats are relatively un-
controllable and high-cost, we simulated a chat
scenario with a foreign partner based on chat data
from Persona-chat (Zhang et al., 2018). In the
simulation, participants are presented with three
initial chat turns as historical chat logs at the be-
ginning.Participants choose the most contextually
fitting response from the three provided options
each time their scripted partners respond iteratively.
To explore the cognitive processes of individuals
lacking proficiency in a foreign language, we oper-
ated under the assumption that participants would
receive translated messages generated by the ma-
chine translation system from their partners. Hence,
all texts within the survey are presented to partici-
pants in their native language.

3.2 Chat Data

We prepared the simulated scenarios with the
Persona-chat dataset, containing multi-turn chat
data about various personality traits with assumed
personas in English. To ensure the quality of the
data, we eliminated incoherent and unnatural chat
data from Persona-chat through crowdsourcing at
Amazon Mechanical Turk 5. We defined “inco-

5https://requester.mturk.com/
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herence” as questions being ignored, the presence
of unnatural topic changes, one speaker not ad-
dressing what the other speaker said, responses
appearing to be out of order or generally difficult
to follow. We scored each chat according to the
workers’ answers and selected 6 of 1, 500 chats
marked as accurate and coherent by at least seven
of the ten workers. The chosen chats were used as
the base of the simulated scenarios in the survey.

Similarly, we required proficient English speak-
ers to continue the chat with given personas and
topics from Persona-chat for other branching op-
tions and extended chats triggered by the options.

3.3 Erroneous Translations
To provide the chat data that were supposed to
be erroneous translations, we translated the pre-
pared chat data with a low-quality machine trans-
lation model that achieved a considerably low
BLEU score (Papineni et al., 2002) of 4.9 on
the English-Japanese chat translation evaluation
dataset BPersona-chat (Li et al., 2022a). Conse-
quently, we transformed the low-quality transla-
tions twenty times through Google Translate into
different languages and finally translated them back
to the source language of the survey. To ensure the
final translations could serve as erroneous trans-
lations, we manually confirmed that the texts in-
cluded significant syntax issues, incorrect emo-
tional expressions, incoherence, or other errors that
led to confusion. We designed that at least one of
the three turns of the simulated chat would include
erroneous translations. We required proficient En-
glish speakers to continue the chat based on the
erroneous translations to prepare the extended chat.

3.4 Warning Messages
We designed the warning message to notify partici-
pants of erroneous translations in the chat. When
the current text is assumed to be the erroneous
translation, participants are presented with a warn-
ing message alerting them of the mistranslation, as
shown in Figure 1. We structured the warning mes-
sages into two types since receiving and sending
are both essential in a conversation. One type alerts
participants of erroneous translations in the mes-
sages they received, while the other type indicates
potential errors in the last message they sent.

3.5 Corresponding Questions
After the chat, participants are asked to answer if
they notice erroneous translations without hints. If

participants answer yes, they rate their experience
on two Likert Scale questions (Joshi et al., 2015;
Nemoto and Beglar, 2014). The first question as-
sesses the extent to which the errors prevented them
from continuing the chat, while the second ques-
tion asks to what extent they could grasp exactly
where the erroneous translations were in the mes-
sage. Participants will use 1-5 to score their per-
ceptions, with higher numbers indicating a greater
awareness or understanding of the errors.

Participants must also rate on a Likert Scale ques-
tion the extent to which they think the warning
helped them continue the chat. Further, they check
the plural options of additional features they find
helpful if added to the warnings. Selectable fea-
tures include: indicating the correctness rate of the
translation, providing alternative translation sug-
gestions, showing specific errors in the translation,
and suggesting the emotion of their partner.6

4 Crowdsourcing Experiments

We prepared the survey in English, Chinese, and
Japanese to observe the possible difference be-
tween languages. Professional translators trans-
lated the data from English to Chinese and Japanese
to ensure quality. We prepared three sets of chat
data for each type of warning message and two
types of warnings; hence, we provided six sets of
chat and collected the responses through crowd-
sourcing. We provided instructions for participants
on how the chat would be presented and what they
should do to attend the chat at the beginning of the
task. Participants would be acknowledged that (1)
their partner would speak to them in a language
other than their native language, (2) the system
would translate their partners’ messages and the
chat would only be presented in their language,
(3) they would read the chat log and choose the
most reasonable of the three options, (4) the mes-
sage sent to them would be displayed on the odd-
numbered lines, and their answer would be dis-
played on the even-numbered lines.

To minimize any possible influence of showing
warnings first or later, we provided each chat in two
orders. Participants answer either without warning
messages first or with warning messages first. At
the round of warning messages, we would explain
the role of warning messages to participants and
inform them that they could refer to the warnings

6Participants can fill in their comments or skip if they do
not have any specific wanting features.
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Figure 2: The responses to how participants think the
warning messages helped them continue the chat.

to help them make choices.
We invited at least 50 participants for each order

and ensured they could not join both orders through
the crowdsourcing platforms’ features. Crowd-
workers were unaware of the fact that there were
two orders, and they did not know which order
they would join. Ultimately, we invited at least 100
participants for each set of chats.

The surveys were conducted on Amazon Me-
chanical Turk7 for English participants, WenJuanX-
ing8 for Chinese participants, and CrowdWorks9

for Japanese participants. Workers participated
anonymously and were informed that the results
would be used for academic purposes. Classifica-
tion rounds were held in advance for efficiency.

5 Results and Analysis

Under the different policies of crowdsourcing plat-
forms, we finally gathered 604 English, 635 Chi-
nese, and 621 Japanese responses. Figure 2 dis-
plays the overall summaries. Around 70% of par-
ticipants across three languages rated the warning
messages as “4 - helpful” or above in the chat.
Most participants view the warning messages as
helpful in cross-lingual chats, aligned with Likert
Scale analysis (Amidei et al., 2019).

With or without warning messages The results
of “Without hints, do you think there were erro-
neous translations in the chat” based on the or-
der in which participants answered the survey are
listed in Table 1. The percentages of noticing erro-
neous translations without hints remain consistent,
regardless of participants answering with warning
messages first or after. Hence, we conclude that the
impact of answering orders on the crowds appears
minimal. Moreover, considering a score greater
or equal to 4 suggests the positivity of a Likert

7https://requester.mturk.com/
8https://www.wjx.cn/
9https://crowdworks.jp/

Figure 3: The results that whether participants changed
their choices with the help of warning messages.

Scale question, we conclude that most participants
who noticed erroneous translations also considered
those errors as obstacles.

It is worth noting that while the English and Chi-
nese results are relatively similar, Japanese results
differ slightly. The recognition of erroneous trans-
lations without hints is notably lower in Japanese
than in English and Chinese contexts. Partici-
pants’ feedback suggests this may be related to
Japanese linguistic specificity in “omission.” Par-
ticipants considered erroneous translations as omis-
sions, aligning with Japanese conversational pat-
terns where subjects or objects are often omitted.
The warning messages helped them realize that the
expression was not omitted but errors for the better
continuation of the chat.

Additionally, English and Chinese participants
also remarked that the warnings clarified unusual
expressions as translation errors rather than humor
or slang. The feedback helped state the usefulness
of warning messages and the consideration for fu-
ture differentiation between translation errors and
humorous terms or buzzwords.

Impact of warning messages on modifying user’s
chat behavior We analyzed participants’ choices
in relation to warning messages, categorizing them
into three cases: (1) entered the same scenario in
both the round with warnings and the round without
warnings and did not change their choices, (2) en-
tered the same scenario in both rounds and changed
their choices, and (3) did not change their choices
due to entering other branches in advance. We
believe that the first case demonstrates that partici-
pants were not influenced by warnings, while the
second case shows that they were influenced. In
the third case, although it is impossible to compare
whether participants changed their choices in the
same scenario since they changed earlier, we still
view it as an indirect influence due to the equiv-
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Without Warning Messages First With Warning Messages First
English Noticing mistranslations without hints Noticing mistranslations without hints

234 of 303 (77.2%) 234 of 302 (77.4%)
Considering mistranslations to be barriers Considering mistranslations to be barriers
Score=1 Score=2 Score=3 Score=4 Score=5 Score=1 Score=2 Score=3 Score=4 Score=5
2 11 56 126 39 5 17 55 108 49

Chinese Noticing the erroneous translations without hints Noticing the erroneous translations without hints
228 of 325 (70.2%) 241 of 310 (77.7%)
Considering mistranslations to be barriers Considering mistranslations to be barriers
Score=1 Score=2 Score=3 Score=4 Score=5 Score=1 Score=2 Score=3 Score=4 Score=5
2 26 45 112 53 2 26 62 115 36

Japanese Noticing the erroneous translations without hints Noticing the erroneous translations without hints
175 of 321 (54.5%) 158 of 300 (52.7%)
Considering mistranslations to be barriers Considering mistranslations to be barriers
Score=1 Score=2 Score=3 Score=4 Score=5 Score=1 Score=2 Score=3 Score=4 Score=5
3 21 29 89 33 1 17 29 86 25

Table 1: The results of the questions about noticing erroneous translations without hints in the two different
answering orders. Participants who answered yes to the question continued to rate the extent they considered the
erroneous translations to be barriers in the chat. The higher the score was, the more confused the participant felt.

Figure 4: The responses to how participants think the
warnings of the received/sent messages helped them
continue the chat.

alence between having no warning messages and
having no erroneous translations. Indeed, 103 par-
ticipants stated they changed their choices as they
ensured there were no erroneous translations.

Survey results shown in Figure 3 indicate that ap-
proximately 25% participants remained unchanged,
while about 75% changed their choices, either di-
rectly or indirectly, due to the warning messages.
We confirm that the participants were genuinely
influenced by warning messages and participated
in the subsequent feedback.

Warnings on the received messages or the sent
messages The collected responses of different
types of warning messages are summarized in Fig-

Figure 5: The results about expected additional features
to the warning messages.

ure 4. Regardless of whether the warning messages
indicated translation errors in the message received
or sent, over 60% of the participants found the
warning messages helpful (rating with a score-4 or
higher) in all three languages.

Expected features of the warning message The
results of expected additional information of the
warning message are presented in Figure 5.

Chinese and Japanese participants showed a
greater expectation for warning messages to in-
dicate the exact error of their partners’ messages.
In addition, Chinese participants prefer to know the
correct rate. Feedback from participants indicated
that the correctness rate would better assist them
in determining whether they needed to reinterpret.
Japanese participants consider having other trans-
lation suggestions as references. English survey
participants voted on all the listed features on av-
erage, but knowing their partner’s emotions were
still lower than others. In summary, to enhance
the warning messages, the focus may better be on
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highlighting the exact errors in the translations.

6 Conclusions

We conducted a survey to investigate the effective-
ness of warning about possible mistranslations in
chat as an alternative approach to enhance the ex-
perience of cross-lingual communication. Through
crowdsourcing, we collected responses and con-
cluded that such warning messages are helpful. By
comparing the participants’ choices with and with-
out warning messages, we found that the warn-
ing messages did encourage participants to change
their behaviors. We also found the crowd expects
the warning message to (1) show the specific er-
ror in the translation, (2) indicate the correctness
rate of the translation, and (3) provide alternative
translation suggestions.

This survey is the first to explore the effects
of warning about erroneous translations in cross-
lingual chat, providing valuable insights for devel-
oping an assistant function that detects and warns
people of erroneous chat translations.

Limitations

During the survey design phase, diligent measures
were taken to minimize potential leading effects
on the participants’ judgment by randomly switch-
ing the order and neutralizing the questioning style.
Despite the conscientious efforts, we must acknowl-
edge the inherent challenges in completely elimi-
nating all influences on the people who participated
in the survey. With this realization, we recognize
the need for further optimization to guarantee the
fairness and validity of the responses. Refinement
is warranted to minimize the biases further.

Ethics

The crowdsourcing survey employed in this study
adheres to stringent ethical guidelines to ensure
participant privacy and data protection. The survey
design deliberately avoids collecting any person-
ally identifiable information from the participants.
No restrictions or enforcement of work hours were
imposed upon participants, thereby eliminating un-
due influence or coercion. Given the absence of
personal data collection and voluntary participa-
tion, the data is not subject to ethics review at the
organization. Consequently, the survey design and
data collection procedures adhere to the ethical
standards and regulations governing research prac-
tices.
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Abstract

Neural Machine Translation (NMT) models are
state-of-the-art for machine translation. How-
ever, these models are known to have various
social biases, especially gender bias. Most of
the work on evaluating gender bias in NMT
has focused primarily on English as the source
language. For source languages different from
English, most of the studies use gender-neutral
sentences to evaluate gender bias. However,
practically, many sentences that we encounter
do have gender information. Therefore, it
makes more sense to evaluate for bias using
such sentences. This allows us to determine if
NMT models can identify the correct gender
based on the grammatical gender cues in the
source sentence rather than relying on biased
correlations with, say, occupation terms. To
demonstrate our point, in this work, we use
Hindi as the source language and construct two
sets of gender-specific sentences: OTSC-Hindi
and WinoMT-Hindi that we use to evaluate dif-
ferent Hindi-English (HI-EN) NMT systems
automatically for gender bias. Our work high-
lights the importance of considering the nature
of language when designing such extrinsic bias
evaluation datasets.

1 Introduction

Various models trained to learn from data are sus-
ceptible to picking up spurious correlations in their
training data, which can lead to multiple social bi-
ases. In NLP, such biases have been observed in
different forms: Bolukbasi et al. (2016) found that
word embeddings exhibit gender stereotypes, Zhao
et al. (2017) observed that models for visual seman-
tic role labelling aggrandize existing gender bias
present in data, similar biased behaviour had been
observed in NLP tasks like coreference resolution
(Lu et al., 2019) and Natural Language Inference
(Rudinger et al., 2017).

Even state-of-the-art NMT models develop such
biases (Prates et al., 2019). These models can ex-

press gender bias in different ways. One is when
due to their poor coreference resolution ability,
they rely on biased associations with, say, occupa-
tion terms to disambiguate the gender of pronouns
(Stanovsky et al., 2019; Saunders et al., 2020). An-
other is when these models translate gender-neutral
sentences into gendered ones (Prates et al., 2019;
Cho et al., 2019). In many cases, NMT models
give a ‘masculine default’ translation.

This problem also exists for HI-EN Machine
Translation (Ramesh et al., 2021). When put to use,
such systems can cause various harms (Savoldi
et al., 2021). Thus, evaluating and mitigating such
biases from NMT models is critical to ensure fair-
ness.

Prior research evaluating gender bias in machine
translation has predominantly centered around En-
glish as the source language (Stanovsky et al.,
2019). However, these evaluation methods or
benchmarks don’t seamlessly extend to other
source languages, especially the ones with gram-
matical gender. For instance, in Hindi, elements
like pronouns, adjectives, and verbs are often in-
flected with gender. Nonetheless, prior studies in
other source languages often utilize gender-neutral
sentences (Cho et al., 2019; Ramesh et al., 2021)
for bias evaluation. Yet, in practice, many sen-
tences inherently possess gender information.

Therefore, in this work, we propose to evaluate
NMT models for bias using sentences with gram-
matical gender cues of the source language. This
allows us to ascertain whether NMT models can
discern the accurate gender from context or if they
depend on biased correlations. In this work, we
contribute the following :

• Using Hindi as source language in NMT, we
highlight the limitations of existing bias eval-
uation methods that use gender-neutral sen-
tences.

• Additionally, we propose to use context-based
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gender bias evaluation using grammatical gen-
der markers of the source language. We con-
struct two evaluation sets for bias evaluation
of NMT models: Occupation Testset with
Simple Context (OTSC-Hindi) and WinoMT-
Hindi.

• Using these evaluation sets, we evaluate var-
ious blackbox and open-source HI-EN NMT
models for gender bias.

• We highlight the importance of creating such
benchmarks for source languages with expres-
sive gender markers.

Code and data are publicly available1.

2 Experimental Setup

NMT Models : We test HI-EN NMT models
which are widely popular and represent state-of-
the-art in both commercial or academic research :
(1) IndicTrans (Ramesh et al., 2022), (2) Google
Translate2, (3) Microsoft Translator3, and (4) AWS
Translate4. IndicTrans is an academic, open-source
multilingual NMT model, while the latter four are
commercial NMT systems available via APIs.

Hindi as Source Language : We create
bias evaluation sentences in Hindi to evaluate
HI-EN NMT Models. We choose Hindi due to
two reasons. First, only limited research has
been done on evaluating gender bias in Hindi
translation. Previous work by Ramesh et al. (2021)
focused only on the gender-neutral side of Hindi by
evaluating simple sentences with gender-neutral,
third person pronouns like “vh(vah)”, “v�(ve)”
and “vo(vo)”. Second, choosing Hindi allows us
to demonstrate bias evaluation using sentences
with a diverse range of gender markers. In Hindi,
verbs, adjectives and possessive pronouns often
carry gender indicators. The grammatical gender
system in Hindi is exclusively rooted in biological
gender (Agnihotri, 2007). However, the variety
of gender markers can be different for different
languages. Therefore it’s essential to study
gender-related rules of the specific language for
creating benchmarks for such tasks.

1https://github.com/iampushpdeep/
Gender-Bias-Hi-En-Eval

2https://translate.google.com/
3https://www.bing.com/translator
4https://aws.amazon.com/translate/

3 TGBI Evaluation using Gender-Neutral
Sentences

Cho et al. (2019) introduced translation gender
bias index (TGBI) as a metric to measure bias
in NMT systems using gender-neutral source lan-
guage sentences, originally for the Korean lan-
guage. Ramesh et al. (2021) showed that the TGBI
metric can be applied to Hindi too. They con-
structed seven sets (P1 to P7) of gender-neutral
sentences in Hindi which included: formal (S1),
impolite (S2), informal (S3), occupation (S4), neg-
ative (S5), polite (S6), and positive (S7) versions.

For translation into English, TGBI uses the frac-
tion of sentences in a sentence set S translated as
“masculine”, “feminine” or “neutral" in the target ,
i.e., pm, pf and pn, respectively to calculate PS as
:

PS =
√
(pmpf + pn) (1)

Pi is calculated for each sentence set Si (S1 to Sn)
to finally calculate TGBI = avg(Pi). Using lists
from Ramesh et al. (2021), we evaluate four HI-
EN NMT models using the TGBI score to create a
comparison for our evaluation methods.

Often, using a metric like TGBI is not very prac-
tical. For example, when the original intent is not
gender-neutral but constraints of the source lan-
guage make it gender-neutral, then showing all ver-
sions5 or random guessing, with a 50% chance of
choosing one gender in translation, are more practi-
cal. Also, gender-specific sentences are more com-
mon and making errors in such sentences makes
for a more unfair system. Hence, we propose to
expose gender bias by evaluating NMT models on
such source language sentences.

4 Approach

We construct two sets of sentences, one with a
simple gender-specified context and another with a
more complex context. In creating these sets, we
focus on the gender markers of the source language,
i.e. Hindi. Also, we use template sentences which
can help to automatically evaluate bias without
using additional tools at the target side.

4.1 OTSC-Hindi

Escudé Font and Costa-jussà (2019) created a test
set with custom template sentences to evaluate the

5https://ai.googleblog.com/2020/04/
a-scalable-approach-to-reducing-gender.
html
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Speaker

  Speaker's friend

जानता (to know) for male speaker 
जानती (to know) for female speaker.coreference

pronoun

speaker's  friend

मेरा/मेरी
 (Translates - 'my')
मेरा for male friend 

मेरी for female friend. 

(meaning - 'to do')
Gender inflected verb

following friend's
gender

       English Translation ~
I have known [him/her] for a long time, my friend works as a
[occupation].

म� उसे काफ� समय से [जानता/जानती] �ँ ,

[मेरा/मेरी] दो� [occupation] का काम [करता/करती] ह।ै

Figure 1: OTSC-Hindi sample template sentence along
with its English translation. Gender of the speaker is
specified by gender-inflected verb, i.e. “jAntA” or
“jAntF”. The possessive pronoun “m�rA" or “m�rF" and
the verb “krtA” or “krtF” specify friend’s gender.
Here, the pronoun “us�" references speaker’s friend.

gender bias for English to Spanish Translation. In-
spired by this template, we create a Hindi version
with grammatical gender cues: “ m{\ us� kAPF
smy s� {jAntA ,jAntF} h� , {m�rA ,m�rF} do-t
[occupation] kA kAm {krtA ,krtF} h{। ” (I have
known [him/her] for a long time, my friend works
as a [occupation].) Figure 1 explains the template
and gender-related information. Note that, unlike
the English version, this template specifies the gen-
der of the speaker (first person) using a gender-
inflected verb, i.e. “jAntA(jaanta)” for male while
“jAntF(jaanti)” for female. The possessive pro-
noun is also gender inflected based on the gender
of the speaker’s friend. In Hindi, the possessive
pronoun is gender inflected based on the word fol-
lowing it, here “m�rA(mera)" is used for male friend
while “m�rF(meri)" is used for female friend. Based
on the use of “m�rA(mera)" or “m�rF(meri)", the
verb “krtA(karta)” and “krtF(karti)” is used for
a male friend and female friend, respectively. So
in this template, there are four possibilities based
on the gender of the speaker and the gender of
the speaker’s friend. Using 1071 occupations, we
construct these four sets with 1071 sentences each
and check the percentage of sentences where the
speaker’s friend is translated as male or female.
This is because English translation only specifies
the gender of the friend while the gender of the
speaker is lost in translation.

4.2 WinoMT-Hindi

In the real world, NMT models deal with more com-
plex sentences: long sentences with further context,

gender
neutral

pronouns
such as वह,
उसे, उसने etc.

Gender Neutral PhraseGendered Phrase(only Entity 1's gender)

has gender
inflected

verb (based on
Entity 1)

 e.g. करता, करती 
etc. 

e.g. और,
���क,
ता�क, etc.

[Entity 1] [Entity 2] interaction [conjunction] [pronoun] circumstance.

Gender Neutral PhraseGendered Phrase(only Entity 2's gender)

has gender
inflected relational

postposition
or adjective (based

on Entity 2) e.g.
 के(m), क�(f),
अ�े(m), 
अ�ी(f) etc. 

e.g. और,
���क,
ता�क, etc.

[Entity 1] relation [Entity 2] interaction [conjunction] [pronoun] circumstance.

gender
neutral
phrase

Coreference to
Entity 1

gender
neutral

pronouns
such as वह,
उसे, उसने

etc.

Coreference to
Entity 2

Figure 2: Sentence Template for WinoMT-Hindi. When
Entity 1 is referenced, we use gender-inflected verb to
specify its gender. When Entity 2 is referenced, its gen-
der is specified using gender-inflected relational post-
position or an adjective. Phrase after the conjuction
(containing the pronoun which refers to either entity) is
gender neutral.

The lawyer shouts at the secretary as he got angry.

The lawyer yelled at the secretary there because she had done a bad job.

The lawyer shouts at the secretary as she got angry.

The lawyer yelled at the secretary there because he had done a bad job.

वक�ल स�चव पर �च�ाता ह ै���क उसे गु�ा आया था।

वक�ल ने वहाँ क� स�चव पर �च�ाया ���क उसने बुरा काम �कया था।

वक�ल स�चव पर �च�ाती ह ै���क उसे गु�ा आया था।

वक�ल ने वहाँ के स�चव पर �च�ाया ���क उसने बुरा काम �कया था।

Figure 3: Sample Sentences in WinoMT-Hindi. The
solid line shows pro-stereotypical coreference, while
the dashed line shows anti-stereotypical coreference.
Male and female (stereotypically) entities are marked in
blue and orange boxes, respectively. Hindi pronouns are
marked in blue or orange box based on the actual gender
of their referred entity according to the grammatical
context.

more entities, and complex coreferences. A model
not good at coreference resolution becomes gender-
biased when it relies on biased correlations to as-
certain gender. Stanovsky et al. (2019) composed a
challenge set called WinoMT for evaluating gender
bias in NMT models. This set combined gender-
balanced Winogender (Rudinger et al., 2018) and
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WinoBias (Zhao et al., 2018) coreference test sets.
However, since it is in English, using it for evalu-
ating bias for other source languages is not possi-
ble. Therefore we contextualize this test set for
the evaluation of bias in HI-EN Translation by
manually creating “WinoMT-Hindi”, which con-
sists of 704 WinoBias-like sentences in Hindi, but
modified to include gender cues of the language,
mainly: gender-inflected adjectives, postpositions,
and verbs.

Construction of “WinoMT-Hindi” is explained in
Figure 2. Sample sentences are shown in Figure 3.
In Winobias, only the English pronoun carries the
gender of referenced entity, but here, to provide
the gender of the referenced entity, we use gender-
inflected verbs for Entity 1 and postpositions or
adjectives for Entity 2. The phrase after the con-
junction is gender-neutral, challenging the model
to look for a more extended context. We only spec-
ify the gender of the referenced entity to avoid
confusing the model with too much information.

We don’t need reference translations in English,
as automatic evaluation is possible. Due to the
nature of our source sentences, we can mark the
gender of the target by simply checking for the
presence of male pronouns (he, him or his) or fe-
male pronouns (she or her) in the translation. In-
terestingly, we also observe that few sentences are
translated into gender-neutral form. For example,
the sentence: “sEcv m� vr s� p� CtA h{ Ek vh
mdd k� Ele kyA kr�” (Secretary asks mover what
he should do to help) is translated as “The secre-
tary asks the mover what to do to help” by Google
Translate. While there is an increased interest in
promoting Gender-Neutral translation for inclusiv-
ity (Piergentili et al., 2023), others call for gender
preservation in translation (Cabrera and Niehues,
2023). The presence of neutral output sentences
can be modelled as false negatives or true positives
depending upon the goals of the evaluation. For
this study, we model their presence as false nega-
tives for male and female class, i.e. equivalent to
misgendering sentences. Nonetheless, due to the
limited fraction of such sentences, metrics largely
reflect bias due to misgendering.

For gender bias evaluation, we use the metrics:
Acc, ∆G and ∆S given by Stanovsky et al. (2019).
For measuring the difference in F1 score between
male and female classes, i.e. ∆G, we use class-
wise F1 score. We have divided our sentences
into pro-stereotypical and anti-stereotypical sets

using translated and transliterated versions of the
occupations list by Zhao et al. (2018). This was
done manually to ensure gender-neutrality of these
occupation terms (and avoid their gender-inflected
versions) in Hindi. To measure the difference in
overall performance between pro-stereotypical and
anti-stereotypical groups, i.e., ∆S , we use macro-
F1 score by averaging F1 for male and female class
only. We also report the percentage of sentences
translated as gender-neutral, i.e. N for each NMT
system.

IT GT MS AWS

S1 0.787 0.708 0.724 0.691
S2 0.620 0.534 0.394 0.656
S3 0.623 0.623 0.467 0.682
S4 0.569 0.531 0.574 0.411
S5 0.819 0.763 0.673 0.803
S6 0.926∗ 0.862∗ 0.951∗ 0.725
S7 0.848 0.788 0.720 0.845∗

TGBI 0.742 0.687 0.643 0.688

Table 1: TGBI Evaluation of IndicTrans (IT), Google
Translate (GT), Microsoft Translator (MS) and AWS
Translate (AWS). The table contains the P values
(higher is better) and their average, i.e. TGBI at the
bottom. Bold represents the top three highest P values.
∗ represent set with highest P value. The highlighted
cell represents the highest TGBI value.

5 Results and Discussion

5.1 TGBI Evaluation

The results are shown in Table 1. For most transla-
tion systems, sentences in “Negative (S5)”, “Polite
(S6)” and “Positive (S7)” sets have higher P val-
ues. With the highest TGBI score, “IndicTrans”
performs better at translating gender-neutral Hindi
sentences into English with minimum gender bias.
The problem with the TGBI metric is that it may
not accurately capture the true fairness of an NMT
system since evaluation is only done on gender-
neutral sentences.

5.2 Evaluation using OTSC-Hindi

The results are shown in Table 2. Based on these
results, the IndicTrans system shows heavy bias
against the feminine gender. Even though it has
the highest TGBI score, IndicTrans fails to use the
given context to disambiguate the gender of oc-
cupation terms and gives “male default” for most
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IT GT MS AWS
Sentence Set pm pw pm pw pm pw pm pw

Female Speaker, Female Friend 98.41 1.59∗ 1.68 98.32∗ 98.97 1.03∗ 95.61 4.39∗

Female Speaker, Male Friend 99.25∗ 0.75 90.66∗ 9.34 99.72∗ 0.28 95.70∗ 4.30
Male Speaker, Female Friend 99.35 0.65∗ 2.43 97.57∗ 66.01 33.99∗ 99.29 2.71∗

Male Speaker, Male Friend 99.91∗ 0.09 96.45∗ 3.55 98.60∗ 1.40 97.48∗ 2.52

Table 2: Evaluation of IndicTrans(IT), Google Translate(GT), Microsoft Translator(MS) and AWS Translate(AWS)
using the OTSC-Hindi test set. Here pm and pw are the percentage of sentences translated as male and female,
respectively for the speaker’s friend. ∗ corresponds to the percentage of sentences translated into the true label for
each sentence set. Bold values indicate the maximum percentage of sentences translated into a single gender class.

Acc ∆G ∆S N

IndicTrans 48.9 48.5 -0.1• 6.2
Google Translate 69.0⋆ 10.6⋄ -3.8 5.3
Microsoft Translator 57.7 32.9 0.2• 4.1
AWS Translate 49.9 51.9 -0.2• 2.8

Table 3: Comparison of performance of various NMT
Models on WinoMT-Hindi on Acc, ∆G, ∆S and N (all
in %) measures. ⋆ indicates significantly highest value,
⋄ indicates significantly lowest value, • indicates near
about values for Acc, ∆G and ∆S , respectively.

of the translations. Similarly, Microsoft and AWS
Translate systems also show bias against women by
translating most of the sentences into their “male
default" versions. Out of all the NMT models,
Google Translate performs best at disambiguating
gender from the given context. This shows that
using such a set of sentences and extrinsic met-
rics, which take into account the gendered nature
of the source sentence, is better at exposing the
gender bias of an NMT system otherwise hidden
by a metric such as TGBI.

5.3 Evaluation using WinoMT-Hindi

The results are shown in Table 3. Since Acc i.e.
Accuracy should be high while ∆G and ∆S values
should be low, Google Translate outperforms other
models as being the least gender-biased model. In-
dicTrans and AWS Translate are heavily biased
toward a particular gender. These models have
lower Acc values (almost equal to the probability
of a random guess, i.e. 50%) and higher ∆G values
indicating that the F1 score for the male class is
very large in comparison to the F1 score for female.

We also observe that ∆S values are very low
for all NMT systems. There are two potential rea-
sons. First, it is observed that these HI-EN NMT

systems strongly prefer masculine outputs irrespec-
tive of occupation stereotypes. Hence they give
the “masculine default” in most cases leading to a
similar performance on pro-stereotypical and anti-
stereotypical sentences. Another reason can be
the poor contextualisation of occupation stereotype.
We rely on stereotype labels provided by original
English occupation lists by Zhao et al. (2018) to
divide the occupations into pro-stereotypical and
anti-stereotypical sets. However, these lists were
based on data from US Department of Labor. This
might not contextualise well for Hindi. Culturally
relevant occupation related statistics is required for
creating these stereotype labels for different occu-
pations in Hindi which was difficult to obtain in
our case.

However, WinoMT-Hindi provides a way to gen-
eralise and motivate the creation of such evaluation
benchmarks for other languages.

6 Related Work

Many works have focused on evaluating gender
translation accuracy by creating various bench-
marks. WinoMT benchmark by Stanovsky et al.
(2019) is widely used for gender bias evaluation.
It contains sentences from WinoBias (Zhao et al.,
2018) and Winogender (Rudinger et al., 2018)
coreference test sets in English. Without reference
translations, it devises an automatic translation eval-
uation method for eight diverse target languages.

Other benchmarks include MuST-SHE (Ben-
tivogli et al., 2020), GeBioCorpus (Costa-jussà
et al., 2020), MT-GenEval (Currey et al., 2022),
GATE (Rarrick et al., 2023) etc. MT-GenEval pro-
vides gender-balanced, counterfactual sentences in
eight language pairs with English as the source.
Therefore, most of the benchmarks focus on En-
glish as the source language.

Bias evaluation of NMT models on source lan-
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guages other than English has mainly focused on
the translation of gender-neutral sentences. Cho
et al. (2019) proposed TGBI measure to evaluate
gender bias in the translation of gender-neutral Ko-
rean sentences to English. Ramesh et al. (2021)
used TGBI measure for Hindi-English machine
translation. Our work emphasises on creation of
gender unambiguous evaluation benchmarks for
source languages other than English by accounting
for gender inflections in the language to test the
model’s ability to find these gender-related cues.

7 Conclusion and Future Work

To conclude our study, we highlighted the need
for contextualising NMT bias evaluation for non-
English source languages, especially for languages
that capture gender-related information in differ-
ent forms. We demonstrated this using Hindi as a
source language by creating evaluation benchmarks
for HI-EN Machine Translation and comparing var-
ious state-of-the-art translation systems. In future,
we plan to extend our evaluation to more languages
and use natural sentences for evaluation without
following a particular template. We are also look-
ing forward to developing evaluation methods that
are more inclusive of all gender identities.
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Abstract

Automatic evaluation of text generation is es-
sential for improving the accuracy of gener-
ation tasks. In light of the current trend to-
wards increasingly larger decoder-based lan-
guage models, we investigate automatic evalua-
tion methods based on such models for text gen-
eration. This paper compares various methods,
including tuning with encoder-based models
and large language models under equal condi-
tions, on two different tasks, machine transla-
tion evaluation and semantic textual similarity,
in two languages, Japanese and English. Ex-
perimental results show that compared to the
tuned encoder-based models, the tuned decoder-
based models perform poorly. The analysis of
the causes for this suggests that the decoder-
based models focus on surface word sequences
and do not capture meaning. It is also revealed
that in-context learning of very large decoder-
based models such as ChatGPT makes it dif-
ficult to identify fine-grained semantic differ-
ences.

1 Introduction

Neural network-based text generation models are
used in various natural language processing tasks,
including machine translation, dialogue systems,
and text summarization. However, the outputs from
these models are open-ended, and there is no single
correct answer, making the evaluation of genera-
tions difficult. Manual evaluation is often used due
to its high accuracy but incurs significant temporal
and financial costs. Therefore, automatic evalua-
tion is essential for the rapid development of text
generation models.

Automatic evaluation methods for text genera-
tion, such as BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004), have been based mainly on
surface word overlaps between the generated text
and the reference text. In recent years, with the
development of self-supervised models such as
BERT (Devlin et al., 2019) and BART (Lewis

et al., 2020), more accurate automatic evalua-
tion methods have been proposed. For example,
BERTScore (Zhang et al., 2020) uses word em-
beddings obtained by these models. Such meth-
ods can be classified along two axes: whether the
model used is an encoder-based, decoder-based,
or encoder-decoder-based architecture of Trans-
former (Vaswani et al., 2017), and whether tuning
is performed. While encoder-based methods with
tuning are reported to be highly accurate (Rei et al.,
2020), in-context learning without tuning is the
mainstream in decoder-based methods.

In recent years, self-supervised decoder-based
models have become larger and larger, as seen in
GPT-4 (OpenAI, 2023), Megatron-Turing (Smith
et al., 2022), and PaLM (Chowdhery et al., 2022).
These decoder-based self-supervised large lan-
guage models are referred to as LLMs in this paper.
However, encoder-based models have remained rel-
atively smaller than decoder-based ones.

Based on the above situation, this paper com-
pares various methods, including tuning with
encoder-based models and LLMs under equal con-
ditions, on two different tasks, machine translation
evaluation and semantic textual similarity (STS), in
two languages, Japanese and English. The results
revealed the following three observations.

1. When a decoder-based model is tuned, the
accuracy is proportional to the model size up
to a certain model size, but it reaches a ceiling.

2. Compared to tuned encoder-based models,
tuned decoder-based models perform poorly.

3. In-context learning of very large decoder-
based models such as ChatGPT1 makes it dif-
ficult to identify fine-grained semantic differ-
ences.

The analysis of the causes for the poor perfor-
mance of the tuned decoder-based models suggests

1https://openai.com/chatgpt
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that they focus on surface word sequences and do
not capture meaning. Note that our study focuses
on evaluation methods under the assumption that
reference text is available.

2 Related Work

Automatic evaluation of text generation mainly re-
quires the text generated by a model and the refer-
ence text. The classic automatic evaluation metrics,
such as BLEU, ROUGE, METEOR (Banerjee and
Lavie, 2005), and CIDEr (Vedantam et al., 2015),
are based on the n-gram overlap between these two
texts. The biggest disadvantage of these metrics is
that they do not score well even when synonyms
are included, as the n-grams must match exactly for
a higher score. TER (Snover et al., 2006) and oth-
ers that base their evaluation on edit distance have
similar drawbacks. METEOR aims to overcome
this drawback by using a synonym dictionary, but
it is unable to perform context-sensitive synonym
evaluation.

Using embeddings derived from self-supervised
models, synonyms can be judged to be similar
based on their context. BERTScore (Zhang et al.,
2020) is a method that embeds the generated text
and the reference text respectively by an encoder-
based model and calculates a score based on their
similarity. BARTScore (Yuan et al., 2021) and
T5Score (Qin et al., 2022) input the source text to
the encoder and the target text to the decoder, and
calculate a score based on the generation probabil-
ity of the target text. GPTScore (Fu et al., 2023)
calculates a score based on the generation probabil-
ity of the target text by applying in-context learn-
ing (Brown et al., 2020) to an LLM. G-Eval (Liu
et al., 2023) proposes a method to have an LLM
generate scores directly. In addition, Chen et al.
(2023) show that directly generated scores are more
accurate than generation probability-based ones
when using LLMs.

Other evaluation methods increase accuracy by
fine-tuning a self-supervised model using datasets
consisting of text pairs and their similarity la-
bels. Models trained on translation evaluation
datasets include BLEURT (Sellam et al., 2020) and
COMET (Rei et al., 2020), while models trained
on STS datasets include Sentence-BERT (Reimers
and Gurevych, 2019). There are also methods
such as SimCSE (Gao et al., 2021) that learn sen-
tence embeddings by contrastive learning on nat-
ural language inference datasets and use them to

calculate text pair similarity. Most of these self-
supervised methods use encoder-based models. In-
structScore (Xu et al., 2023) is a method of fine-
tuning LLaMA (Touvron et al., 2023). However,
Xu et al. (2023)’s experiments did not involve tuned
LLMs on the target datasets and did not compare
them to encoder-based models under equal condi-
tions. In this study, we compare LLMs, which do
not have bidirectional attention but larger model
size, with encoder-based models, which have bidi-
rectional attention but smaller model size, by tun-
ing them under equal conditions.

3 Experimental Setup

We compare various methods for text generation
evaluation, including tuned encoder-based models
and LLMs on equal conditions, on two different
tasks, machine translation evaluation and STS, in
two languages, Japanese and English.

3.1 Datasets

3.1.1 Datasets in English
For the experiments in English, we use
WMT20 (Mathur et al., 2020) and WMT21 (Fre-
itag et al., 2021) as the translation evaluation
datasets, and STS-B (Cer et al., 2017) and
SICK (Marelli et al., 2014) as the datasets for STS.
WMT20 and WMT21 include human-translated
texts, machine-translated texts, and their eval-
uation labels of Direct Assessment (DA) and
Multidimensional Quality Metrics (MQM). In our
experiments, we adopted the MQM labels that
were evaluated by experts and native speakers.
Since only the Chinese-to-English translation task
is labeled with MQM, we use its datasets (WMT20
MQM and WMT21 MQM). STS and SICK consist
of sentence pairs and their similarity labels. Note
that for WMT20 and WMT21, the datasets were
not pre-separated into train, valid, and test, and we
randomly split these datasets with a ratio of 8:1:1.

3.1.2 Datasets in Japanese
The datasets used in the experiments in Japanese
are the WMT20 English to Japanese translation
task (WMT20 en-ja) and JSTS included in the
Japanese General Language Understanding Evalu-
ation (JGLUE) (Kurihara et al., 2022) benchmark.
The WMT20 dataset includes human-translated
texts, machine-translated texts, and their evaluation
labels (Direct Assessment). JSTS is an STS dataset
for Japanese, consisting of sentence pairs and their
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Method Model Architecture Size WMT20 WMT21 STS-B SICK
No-Tuning Methods
BLEU - - - 0.109 0.120 0.244 0.354
Edit Distance - - - 0.345 0.340 0.089 0.278
BERTScore RoBERTa-large Encoder 355M 0.306 0.294 0.405 0.455
BARTScore CNN+Para BART-large Enc-Dec 406M 0.225 0.219 0.475 0.505
OpenAI Embeddings text-embedding-ada-002 Encoder ? 0.184 0.181 0.655 0.627
ChatGPT Zero-Shot gpt-3.5-turbo Decoder ? 0.113 0.097 0.669 0.622
ChatGPT Few-Shot gpt-3.5-turbo Decoder ? 0.175 0.136 0.618 0.656
Tuning Methods (Not Target Dataset)
BLEURT-20 RemBERT Encoder 576M 0.345 0.323 0.620 0.574
InstructScore LLaMA Decoder 6.7B 0.439 0.345 0.471 0.526
Tuning Methods (Target Dataset)
COMET (WMT21 MQM) XLM-RoBERTa-large Encoder 560M 0.506 0.362 – –
RoBERTa Fine-Tuning RoBERTa-large Encoder 355M 0.699 0.391 0.737 0.658

LLM LoRA-Tuning Cerebras-GPT Decoder

111M 0.589 0.362 0.540 0.425
256M 0.634 0.378 0.585 0.462
590M 0.654 0.371 0.616 0.486
1.3B 0.663 0.383 0.625 0.483
2.7B 0.671 0.377 0.661 0.512
6.7B 0.665 0.370 0.681 0.530

Table 1: Kendall’s correlation coefficients between the predictions by the automatic evaluation metrics and the
labels in the experiments in English.

similarity labels. Note that WMT20 en-ja was ran-
domly split at a ratio of train:valid:test=8:1:1 as in
the English datasets.

3.2 Tuning of LLMs

For the method by LLM tuning, we performed
LoRA-tuning of LLMs using datasets of text pairs
and their evaluation or similarity labels. We chose
LoRA-tuning because it can achieve competitive
accuracy with fine-tuning at a lower cost (Hu et al.,
2021).

3.2.1 Architecture and Input-Output
Relationships

The architecture and input-output relationship of
the LLM’s tuning are shown in Figure 1. Given
a text pair as an input to the model, their similar-
ity value is returned as an output. The following
procedure is used to calculate the similarity.

1. Feed each text of a text pair into an LLM.

2. Obtain the embedding corresponding to the
token at the end of each text (the preceding
token of the EOS token).

3. Calculate the cosine similarity between the
two embeddings.

4. Pass the cosine similarity to a 1-layer FNN
and regard its output as the similarity of the
text pair.

Figure 1: The architecture and input-output overview of
the LLM’s tuning.

The FNN layer is used to convert the cosine
similarity values into a label distribution of the
dataset. Based on the results of our preliminary
experiments, we decided to use the embedding of
the token at the end of a text instead of the special
EOS token.

3.2.2 Training Method
The gold labels (similarity values) in the dataset
are normalized between 0 and 1 in advance. We
calculate the similarity of a text pair using the pro-
cedure described in Section 3.2.1. Next, only the
parameters newly added to the model (including
the parameters of the FNN) are updated based on
the mean squared error between the predictions and
the gold labels. Furthermore, the initial values of
the FNN are set to 1 for weight and 0 for bias. We
employ LoRA-tuning as the tuning method of the
LLM for its high performance.

For experiments in English, we use the Cerebras-
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Method Model Architecture Size WMT20 JSTS
No-Tuning Methods
BLEU - - - 0.226 0.353
Edit Distance - - - 0.242 0.321
BERTScore Waseda RoBERTa-large Encoder 337M 0.319 0.558
OpenAI Embeddings text-embedding-ada-002 Encoder ? 0.237 0.611
ChatGPT Zero-Shot gpt-3.5-turbo Decoder ? 0.187 0.709
ChatGPT Few-Shot gpt-3.5-turbo Decoder ? 0.205 0.690
Tuning Methods (Not Target Dataset)
BLEURT-20 RemBERT Encoder 576M 0.315 0.569
Tuning Methods (Target Dataset)
RoBERTa Fine-Tuning Waseda RoBERTa-large Encoder 337M 0.396 0.729

LLM LoRA-Tuning Rinna-gpt Decoder

37M 0.342 0.600
110M 0.378 0.644
336M 0.396 0.677
1.3B 0.370 0.659
3.6B 0.380 0.687

Table 2: Kendall’s correlation coefficients between the predictions by the automatic evaluation metrics and the
labels in the experiments in Japanese.

GPT models2 with parameter sizes ranging from
111M to 6.7B. These models are tuned on WMT20
MQM for the translation evaluation task and on
STS-B for the STS tasks, respectively. In other
words, the models trained with WMT20 MQM are
evaluated on WMT20 MQM and WMT21 MQM,
and the models trained with STS-B are evaluated
on STS-B and SICK.

For experiments in Japanese, we use the GPT-2
and GPT-NeoX models developed by rinna3, rang-
ing from the 37M model to the 3.6B model. We
trained models on each of the two datasets in Sec-
tion 3.1.2.

3.3 Baselines

For comparison, we adopt the following base-
lines: BLEU, character edit distance, fine-tuned
RoBERTa-large (Liu et al., 2019), BERTScore4,
BARTScore5, OpenAI Embeddings (Neelakan-
tan et al., 2022), in-context learning of Chat-
GPT (gpt-3.5-turbo), BLEURT6, COMET7 and
InstructScore8. For fine-tuned RoBERTa, as de-
scribed in Section 3.2.2, we trained models on
WMT20 MQM and STS-B for the English ex-
periments and on the two datasets shown in Sec-
tion 3.1.2 for the Japanese experiments, respec-
tively. For BERTScore, the training data is used
to select the best output layer to obtain the em-

2https://huggingface.co/cerebras
3https://huggingface.co/rinna
4https://github.com/Tiiiger/bert_score
5https://github.com/neulab/BARTScore
6https://github.com/google-research/

bleurt
7https://unbabel.github.io/COMET
8https://github.com/xu1998hz/SEScore3

beddings. For OpenAI Embeddings, the scores
are the cosine similarity of the obtained embed-
dings. The prompt used in ChatGPT’s in-context
learning is shown in Appendix A. We also had a
preliminary experiment with in-context learning of
Cerebras-GPT as well as ChatGPT, but were un-
able to generate scores successfully. It is assumed
that the model size of few billion is too small for
in-context learning. We do not tune BLEURT, but
instead use BLEURT-20 (Pu et al., 2021), which
is trained in multiple languages. For COMET, we
use the model trained on WMT21 MQM. We do
not apply COMET to the STS datasets because
COMET is a metric for automatic translation evalu-
ation and requires three inputs: pre-translated text,
human-translated text, and machine-translated text.
Our hyperparameters for training are shown in Ap-
pendix B.

Note that BARTScore, COMET, and In-
structScore, only support English and hence are
not used for experiments in Japanese.

4 Experimental Results and Analysis

4.1 Main Results

Kendall’s correlation coefficients between the pre-
dictions by the automatic evaluation metrics and
the gold labels in English and Japanese are shown
in Tables 1 and 2, respectively. For all datasets in
both languages, RoBERTa-large with fine-tuning
achieved the highest accuracy. For LoRA-tuned
LLMs, there is a tendency for the accuracy to be
proportional to the model size up to a certain model
size, but it reaches a ceiling. Also, even models
with overwhelmingly larger parameter sizes than
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Model Size BLEU Edit Distance
WMT20 WMT21 STS-B SICK WMT20 WMT21 STS-B SICK

RoBERTa-large 355M 0.126 0.127 0.237 0.363 0.394 0.511 0.046 0.262

Cerebras-GPT

111M 0.213 0.212 0.281 0.553 0.491 0.612 0.077 0.491
256M 0.192 0.216 0.292 0.553 0.455 0.615 0.081 0.486
590M 0.187 0.211 0.268 0.559 0.432 0.583 0.087 0.487
1.3B 0.175 0.225 0.277 0.545 0.425 0.574 0.096 0.483
2.7B 0.178 0.231 0.263 0.549 0.428 0.567 0.058 0.478
6.7B 0.181 0.205 0.259 0.552 0.441 0.522 0.068 0.472

Table 3: Kendall’s correlations between the metrics based on superficial word sequences and the predictions by
models with tuning in the experiments in English.

RoBERTa-large showed low accuracy. For Chat-
GPT’s in-context learning, the accuracy on the STS
datasets was comparable to that of the tuning-based
methods, but its accuracy on the translation eval-
uation datasets was low. Note that most of the
p-values were very close to 0.

4.2 Analysis of Why Tuned LLMs are Inferior

From Tables 1 and 2, we observe that LoRA-tuned
LLMs, which have by far a larger number of pa-
rameters than RoBERTa-large, are inferior in terms
of performance. We analyze the causes of this from
the experimental results in English.

The most significant difference between the two
models is that RoBERTa, an encoder-based model,
has bidirectional attention, while an LLM has uni-
directional attention. Here, we hypothesized that
unidirectional attention focuses more on surface
word sequences as opposed to bidirectional atten-
tion. To confirm this hypothesis, we calculated the
correlations of the predictions of RoBERTa and
LLMs to BLEU and character edit distance, which
are the metrics based on superficial word sequences.
The results are shown in Table 3. As hypothesized,
the results show that the correlations to both BLEU
and edit distance are stronger for LLMs than the
encoder-based model. The fact that the correlation
decreases as the model size increases in LLMs sug-
gests that the larger the model size, the better the
prediction is able to capture not only the surface
word sequences but also the meaning of the text.
However, even with a model size of 6.7B, the LLM
is still not as accurate as RoBERTa.

4.3 Analysis of the Inability of ChatGPT’s
In-context Learning

While ChatGPT’s in-context learning showed high
accuracy on the STS datasets, it did not perform
well on the translation evaluation datasets. We
analyze the causes of this from the experimental
results in English.

Figure 2: Label distribution of the test datasets used in
the English experiments.

In our experiments, the prompts were created
to score on a scale of 0 to 100. However, in the
output scores, there were many cases where the
last digit was 0 or 5 in both zero-shot and few-shot
settings. Also, as shown in Figure 2, the label dis-
tributions of the translation evaluation datasets are
skewed between 0.9 and 1.0, compared to the STS
datasets, which have gently sloping distributions.
Therefore, most of the predictions in the translation
evaluation datasets are 95, etc., and this is thought
to have caused the accuracy drop. Thus, it is clear
that ChatGPT’s in-context learning has difficulty
in identifying fine-grained semantic differences.

5 Conclusion

In this paper, we compared various automatic evalu-
ation methods for text generation in two languages,
Japanese and English. We showed that fine-tuned
encoder-based models are the strongest when train-
ing data is available, and in-context learning of
ChatGPT is equally accurate when the variance
of scores is large. Our analysis also revealed that
tuned LLMs are less accurate than tuned encoder-
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based models because of their focus on surface
word sequences.

Limitations

Our experiments assume the presence of a training
dataset. If no dataset for training exists, refer to
the results without the Tuning Method (Target
Dataset) to compare the metrics in Tables 1 and 2.
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A Prompt Used in Experiments with ChatGPT

The following text is an example of the prompt used in our experiments with ChatGPT, which was created
by referring to the prompt used in Chen et al. (2023)’s experiments.

B Hyperparameters

The hyperparameters that we used for training models in our experiments are shown in Table 4. Note that
the GPU used in our experiments is the NVIDIA A100 SXM4 GPU with a GPU memory size of 40 GB.

Hyperparameters
RoBERTa

Fine-Tuning
LLM

LoRA-Tuning
Learning Rate 2e-5 2e-4, 1e-4, 5e-5, 1e-5
Epoch Num 10 10
LoRA Dim - 4
LoRA Alpha - 32
LoRA Dropout - 0.1

Table 4: Hyperparameters for training in the experiments.
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Abstract
Since dialogue systems are required to keep its
speech style consistency, evaluating the sim-
ilarity of speech styles is an important task.
However, the Japanese language has a wide
variety of speech styles, and also for each
speech style, huge variety of vocabulary and
word usage characteristics are observed, mak-
ing it difficult to evaluate the similarity of
speech styles. This study proposes a speech
style embedding model that produces a style-
sensitive sentence embedding of Japanese sen-
tences. The speech style embedding model
is constructed by fine-tuning a pre-trained
BERT model. Here, sentence pairs with simi-
lar/dissimilar speech styles are automatically
collected on a large scale using a sequence
of sentences in web novels, with which con-
strastive learning is performed for the train-
ing of the speech style embedding model. Us-
ing the Ward’s hierarchical clustering method,
we also analyze the clusters of speech styles
and the characteristic vocabulary/word usage
of each speech style. Finally, we focus on the
variation in speech styles of each person de-
pending on the situation, and further analyze
the variation in style-sensitive embeddings of
each character in the novel.

1 Introduction

The speech style of a dialogue system plays a
crucial role in user interaction, and dialogue sys-
tems are expected to keep its speech style consis-
tency (Zhou et al., 2020). Therefore, a mecha-
nism for evaluating the similarity of speech styles
across entire utterances is necessary. However, the
Japanese language has a diverse range of speech
styles (Kinsui, 2003; Akama et al., 2018), and a
vast variety of characteristic expressions exist for
each speech style, making it difficult to evaluate
the similarity of speech styles across entire utter-
ances.

In this study, we propose a simple speech style
sentence embedding method, which can produce

embeddings capable of evaluating the similarity of
speech styles by fine-tuning a pre-trained BERT
model (Devlin et al., 2019) using contrastive learn-
ing (Gao et al., 2021). The training dataset con-
sists of positive instances collected from pairs of
utterances estimated to be by an identical charac-
ter and negative instances from pairs of utterances
estimated to be by distinct characters. This data
collection method is based on the observation that
the utterances by an identical character have a con-
sistent speech style, whereas those from different
characters have distinct speech styles. Through
this training, it is expected that the embeddings
can be obtained for evaluating the similarity of
speech styles rather than the content similarity of
sentences. Furthermore, we revealed character-
istic words of various speech styles through unsu-
pervised clustering of style-sensitive sentence em-
beddings. Finally, we focused on utterances by
specific characters within a novel and conducted
an analysis of variations in the speech styles of an
identical character.

The results contribute to confirming the follow-
ing insights:

1. The consecutive utterances in novels are ef-
fective in training the embeddings of speech
style by the proposed approach using con-
trastive learning.

2. The style-sensitive sentence embeddings cor-
rectly capture various speech styles includ-
ing those representing politeness, gender, and
typical fictional character.

3. Even for an identical character, the speech
style can vary significantly depending on
conversation partners and surrounding situ-
ations, where this variation in speech styles
constitutes the characteristic of the character.
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2 Related Work

Numerous prior studies have targeted English
speech styles, investigating various aspects such
as politeness (Rao and Tetreault, 2018; Danescu-
Niculescu-Mizil et al., 2013) and sarcasm (Kho-
dak et al., 2018). Previous research has been con-
ducted on a diverse range of speech styles, and
datasets have also been constructed. In contrast
to previous research, Kang and Hovy (2021) pro-
posed a novel approach to comprehensively grasp-
ing the phenomenon of cross-stylistic language
variation. The primary emphasis lies in examin-
ing the interdependence of diverse styles within
written text, elucidating the interplay between
these styles, and systematically deconstructing
their composition in text generation.

Japanese speech styles rely on various charac-
teristics of the entire sentence, such as first-person
pronouns and sentence-ending expressions (Kin-
sui, 2003; Matsuyoshi et al., 2006; Miyazaki et al.,
2016). Consequently, it is desirable to evalu-
ate the similarity of speech styles across an en-
tire sentence. Akama et al. (2018) proposed an
unsupervised learning method of style-sensitive
word vector that evaluates the similarity of speech
styles. However, Akama’s method focuses on the
speech style of individual words and does not eval-
uate the similarity of speech styles across an en-
tire sentence. To evaluate the similarity of speech
styles across an entire sentence, Miyazaki et al.
(2021a); Zenimoto and Utsuro (2022) proposed
a method that utilizes a speech style classifica-
tion model built with training data containing sen-
tences in specific speech styles. However, these
methods are not adaptable to the speech styles of
unknown characters. In contrast, our method can
be adapted to the speech styles of unknown char-
acters. Furthermore, prior researches utilize undis-
closed datasets for training and evaluation, making
it difficult to conduct comparative experiments.

3 Japanese Speech Style

This section describes the characteristics of
Japanese speech styles, which the proposed model
are expected to capture. In the Japanese lan-
guage, first-person pronouns, particles, and aux-
iliary verbs in utterances differ depending on the
speaker’s trait, such as gender, age, and role (Kin-
sui, 2003; Matsuyoshi et al., 2006; Miyazaki et al.,
2016). For example, the utterance “俺はこれが
好きだぜ (I like it)” is reminiscent of a mascu-

Figure 1: Procedures of Creating Positive and Nega-
tive Instances from Consecutive Utterances (“Positive”
indicates the pairs of utterances estimated to be by an
identical character. “Negative” indicates the pairs of
utterances estimated to be by distinct characters. )

Data type Positive Negative Total
Training 51.3M 53.2M 105M

Validation 259K 269K 528K
Test 259K 269K 528K
Total 51.8M 53.8M 105M

Table 1: Statistics of Experimental Data

line person because the characteristic words “俺
(I)” and “だぜ (daze)” are used predominantly by
males. In contrast, the utterance “私はこれが好き
ですわ (I like it)”, which has the same meaning as
the utterance “俺はこれが好きだぜ (I like it)”, is
reminiscent of a female person because the char-
acteristic words “私 (I)” and “ですわ (desuwa)”
are used predominantly by females. As mentioned
above, the Japanese language has numerous ex-
pressions that, while conveying the same mean-
ing, are reminiscent of significantly different per-
sons. The proposed model is expected to capture
the speech style of utterances that elicit such spe-
cific personal associations.

4 Dataset Construction

4.1 The Procedure

For the training of speech style embedding model
using contrastive learning, it is required to prepare
pairs of sentences with similar speech styles as
positive instances and pairs of sentences with dis-
similar speech styles as negative instances. This
study proposes a method to automatically collect
a large amount of positive and negative instances
from consecutive utterances in novels. In gen-
eral, speakers alternate in consecutive utterances
in novels. Therefore, in consecutive utterances,
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the following pairs of sentences can be considered
as positive and negative instances:

Positive instance 1 Pairs of the n-th and n+2-th
utterances in consecutive utterances.

Positive instance 2 Pairs of sentences in an utter-
ance obtained by splitting an utterance with
specific symbols (“!”, “?” and “。”).

Negative instance Pairs of the n-th and n+1-th
utterances in consecutive utterances.

Figure 1 shows examples of positive and nega-
tive instances. As the resource for the dataset,
we collected about 9,000 novels published on the
novel posting site called “小説家になろう (Aim
to be a novelist)”1, and collected approximately
50 million pairs of positive and negative instances.
Of this total of approximately 100 million pairs
dataset, 99% is used as training data, and the re-
maining 0.5% each as validation and test data.
The statistics of positive and negative instances are
shown in Table 1.

4.2 Evaluation of the Dataset

To verify the correctness of the automatically col-
lected positive and negative instances, we manu-
ally annotated the 5-level scale of similarity grade
from -2 to 2 to each of randomly selected utter-
ance pairs (250 pairs each)2. Table 2 shows that
62.4% of the automatically collected positive in-
stances correctly have similar (i.e., the grades of 2
and 1) speech styles, while 58.8% of the negative
instances correctly have dissimilar (i.e., the grades
of -2 and -1) speech styles. When we consider the
pairs of the similarity grade 0 as correct instances,
the proportion of data that can be properly used
for the training exceeds 70% for both positive and
negative instances, indicating that these automati-
cally collected data are sufficiently useful for con-
structing a speech style embedding model. The
inter-annotator agreement of the annotation was
evaluated using the Quadratic Weighted Kappa
(QWK) score (Cohen, 1968), which ranges from
0 to 1, with a higher value indicating better agree-
ment. Our annotation achieved a QWK score of
0.763, suggesting that there were no significant
disagreement between the two annotators.

1https://syosetu.com/
2The annotation work was done by the first and second

authors, where each pair is annotated with “—” when either
of the two sentences is not an utterance, but an emphasis or a
quotation.

sim.

grade

Comparison withそれは安心ね /
sore wa anshin ne / That’s a relief
(female speech style)

avg. sim.

grade

of two

annotators

ratio (%)

pos. neg.

2

The two sentences are completely

with an equivalent speech style,

containing identical characteristic words.
2.0,
1.5

34.8 12.4
すごいわね / sugoi wa ne / That’s great

(female speech style)

1

The two sentences are with an equivalent

speech style, but containing

distinct characteristic words.
1.0,
0.5

27.6 12.4
どうかしら / do kashira / I’m not sure

(female speech style)

0

Either of the two sentences is an

utterance that could be uttered by anyone.
0 15.6 14.4

それは... / sore wa / That is ...

(common speech style)

-1

The two sentences are not equivalent speech

style, but are utterances that could be used

by an identical person in some situations.
−0.5,
−1.0

7.2 18.0
すごいよ / sugoi yo / It’s great

(kind male speech style)

-2
The two sentences are completely dissimilar. −1.5,

−2.0
7.2 40.8俺の版だぜ / ore no ban daze / It’s my turn

(masculine speech style)

—
Either of the two sentences is not an

utterance, but an emphasis or a quotation. — 4.8 2.0
洞窟 / dokutsu / The Cave

Table 2: Evaluation of Automatically Collected Posi-
tive/Negative Instances

5 Speech Style Embedding Model

5.1 Model Configuration

For the construction of the speech style embedding
model, we utilize the Sentence-BERT architec-
ture (Reimers and Gurevych, 2019), and Tohoku
University’s Japanese version of BERT-base3 as
pre-trained BERT model. The batch size is set
to 128 sentences, and the maximum input to-
ken length is set to 64 tokens. The utilized loss
function is defined by the Contrastive Loss equa-
tion (Hadsell et al., 2006) as presented below:

L =
1

2
Y D2 + (1− Y )max(margin−D, 0)2

Here, Y represents the label where 1 indicates a
positive instance and 0 indicates a negative in-
stance. Following (Gao et al., 2021), we use D
as the cosine distance between the two utterances
of positive/negative instances, and the margin is
set to 1. Through this training process, we antic-
ipate that the speech style of the input utterance
will be embedded in the 768-dimensional output
vector for the CLS token of the speech style em-
bedding model.

3https://github.com/cl-tohoku/
bert-japanese
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Target Utterance Example Utterances to Compare Similarities Similarity

(1)俺はこれが好きだぜ /
ore wa kore ga suki da ze /
I like it /
(a masculine speech style
utterance)

いいじゃねえの / ii ja ne no / That’s good, isn’t it? / (masculine) 0.839
ちょうどよかったぜ / cho do yokatta ze / Just in time / (masculine) 0.770
すごいだろ！ / sugoi da ro / It’s great! / (masculine) 0.502
すごいだろ? / sugoi da ro / It’s great? / (masculine) 0.390
すごいだろ... / sugoi da ro / It’s great... / (masculine) 0.367
すごいだろ / sugoi da ro / It’s great / (masculine) 0.345

(2)どういたしましょうか /
do itashi masyo ka /
what should I do? /
(a strong polite speech style
utterance reminiscent of
a maid or servant)

いかがしますか / ikaga shimasu ka / What would you like? / (strong polite) 0.924
申し訳ありません / moshi wake ari mase n / I’m so sorry / (strong polite) 0.830
お願い致します / onegai itashi masu / I’m begging you / (strong polite) 0.456
お願いします / onegai shi masu / I’m begging you / (polite) 0.480
お願いだよ / onegai da yo / I’m begging you / (casual) -0.514
田中様 / tanaka sama / Mr.Tanaka / (strong polite) 0.844
田中殿 / tanaka dono / Mr.Tanaka / (classical polite) 0.536
田中 / tanaka / Tanaka / (informal) -0.116

(3)ふなっしーはこれが好きなっしー /

funassyi wa kore ga suki nassyi /
I like it /
(a speech style used only
by the fictional mascot
character “ふなっしー (Funassyi)”

お疲れ様なっしー / otsukare sama nassyi / You must be tired / (Funassyi) 0.758
よろしくなっしなー / yoroshiku nassyina / Nice to meet you / (Funassyi) 0.451
危なかったー / abuna katta / That was close / (childish) 0.756
誰だろー / dare daro / I wonder who it is / (childish) 0.670
私はこれが好きです / watashi wa kore ga suki desu / I like it / (formal) 0.259
俺はこれが好きだぜ / ore wa kore ga suki daze / I like it / (masculine) 0.096
儂はこれが好きなんじゃ / watashi wa kore ga suki desu / I like it / (classical) 0.039

Table 3: Examples of Comparing Speech Style Similarities

5.2 Dimensionality Reduction

Using 768-dimensional vectors directly as style-
sensitive sentence embeddings could be consid-
ered excessive in terms of the complexity of
speech styles. Therefore, we attempt to convert
them into smaller-dimensional vectors through di-
mensionality reduction using Principal Compo-
nent Analysis (PCA).

The result of PCA shows that the cumulative
proportion exceeds 99.8% with the first 32 prin-
cipal components, indicating that 32 dimensions
are sufficient to retain speech style information.
Consequently, we treat the vectors with their di-
mensionality reduced to 32 dimensions as the final
style-sensitive sentence embedding.

6 Analysis of Style-sensitive Sentence
Embeddings

6.1 Comparison of Similar Utterances

We verify whether the speech style embedding
model appropriately captures speech style expres-
sions. Table 3 shows examples of comparing
speech style similarities. In the comparison be-
tween (1) a masculine speech style utterance “俺
はこれが好きだぜ (I like this)” and other utter-
ances, it can be seen that the similarities with other
masculine speech style utterances such as with “
ねえの (ne no)” and “よかったぜ (yokatta ze)”
are appropriately high. Moreover, it is evident
that the similarity varies significantly depending
on the specific symbols (“!”, “?”, and “…”). Fur-

thermore, in the comparison between (2) a strong
polite speech style utterance reminiscent of a maid
or servant “どういたしましょうか (What should I
do?)” and other utterances, it can be seen that the
similarities are higher with utterances containing
strong polite expressions like “致します (itashi
masu)” and “様 (sama)” whereas they decrease
significantly for casual speech styles and utter-
ances without honorifics. These results indicate
that the speech style embedding model can effec-
tively distinguish distinct speech styles and under-
stand various nuances in the Japanese language.

Finally, we conduct a comparison between (3) a
unique speech style utterance “ふなっしーはこれ
が好きなっしー (I like this)” and other utterances.
This speech style is used only by the fictional mas-
cot character “ふなっしー (Funassy)”4. This char-
acter, “ふなっしー (Funassy)” usually appends
words such as “なっしー (nassyi)” or its variant
“なっしなー (nassyina)” at the end of sentences.
From the comparison results, the similarity with
the utterances ending with “なっしー (nassyi)” is
appropriately high, and the utterances with dis-
tinctly different speech styles, such as the formal
speech style “私はこれが好きです (I like this)” or
the masculine speech style “俺はこれが好きだぜ
(I like this)”, are appropriately low. It is important
to note that the training data does not include the
speech style of “ふなっしー (Funassy)”, suggest-
ing that the speech style embeddings model can

4https://274ch.com/

35



ID
speech style

Top 5 bi-grams by tf-idf

46
housemaid

(ました / mashi ta), (んです / n desu)
(ません / mase n), (のです / no desu)
(して / shi te)

35
ninja

(でござる / de gozaru)，
(ござるよ / gozaru yo)
(とは / to wa), (ですな / desu na)
(ござるか / gozaru ka)

31
boss

(ように / yo ni), (して / shi te)
(ている / te iru), (だから / da kara)
(しなさい / shi nasai)

12
king

(ておる / te oru), (して / shi te)
(では / de wa), (ている / te iru)
(お主 / o nushi)

13
female

(のよ / no yo), (わよ / wa yo)
(して / shi te), (ないわ / nai wa)
(たの / ta no)

33
masculine

(んだ / n da ), (か？ / ka ?)
(のか / no ka), (ぜ！ / ze !)
(だぜ / da ze)

10
cat

(にゃ！ / nya !), (にゃ？ / nya ?)
(たにゃ / ta nya), (かにゃ / ka nya)
(にょ / ni yo)

22
kind male

(だね / da ne), (かい？ / kai ?)
(んだ / n da), (だよ / da yo)
(のかい / no kai)

Table 4: Example Clusters and their Characteristic Ex-
pressions

correctly evaluate unknown speech styles. How-
ever, the similarity with the utterance containing “
なっしなー (nassyina)” as well as with the variant
of “なっしー (nassyi)” is incorrectly low, suggest-
ing that the speech style embeddings model cannot
correctly evaluate the variant of unknown speech
styles. In addition, the similarity with the different
speech style utterance containing only a prolonged
sound “ー” at the end of sentence is incorrectly
high. While the model can correctly identify and
evaluate distinct speech styles, there is room for
improvement in capturing the variants of unknown
speech styles.

6.2 Analyzing Speech Styles through
Clustering

To analyze the clusters of speech styles and their
characteristics, we conduct clustering on approxi-
mately 820,000 unique utterances in the test data,
which have been converted into style-sensitive
sentence embeddings. To analyze the clustering
process, we attempt hierarchical clustering using
the Ward’s method (Ward Jr., 1963). Due to com-
putational limitation, it is not feasible to cluster all
820,000 style-sensitive sentence embeddings us-
ing the Ward’s method, so we first classify them
into 10,000 clusters using the k-means method,
and then cluster the centroid vectors of k-means

clusters using the Ward’s method5.
Figure 2 shows the dendrogram of the upper-

most 50 clusters in the Ward’s method clustering
results. Next, we extract bi-grams for each sen-
tence within a cluster and calculate their tf-idf val-
ues. Then, we extract the top-5 bi-grams with the
highest tf-idf values as the characteristic expres-
sions of each cluster. Table 4 shows the character-
istic expressions for the sample 8 clusters. From
Figure 2 and Table 4, it is evident that various
interesting clusters are observed, such as “mas-
culine” speech styles, “housemaid” speech styles,
and “cat” speech styles. In the cluster “ID=33”,
expressions like “んだ (n da)” and “だぜ (da ze)”
are ranked at the top, suggesting that “mascu-
line” speech styles are grouped together. On the
other hand, clusters around “ID=26” and “ID=21”
also contain “masculine” speech styles, indicat-
ing that the utterances with closely related speech
styles distributed in distinct clusters. Further-
more, within the clusters grouped together around
“boss” (“ID=31”) speech styles, there are clus-
ters of more unique “king” speech styles that use
expressions like “ておる (te oru)” and “お主 (o
nushi)”. Therefore, it is observed that, while the
expressions that should ideally be in an identical
cluster are somehow closely distributed but still
dispersed, clusters that should be farther apart are
relatively close together. In order to handle these
issues, it is necessary to devise ways to lower the
similarity between different speech styles during
the learning process or to remove wrong data from
the training data.

7 Analysis of Variation in Speech Styles
of an Identical Character

It can be assumed that even for an identical per-
son, their speech style may change depending on
conversation partners and surrounding situations.
Therefore, we analyze the variation in speech
styles embeddings of the utterances of three main
characters in a romance novel6 published on “小説
家になろう (Aim to be a novelist)”. Table 5 shows
the character names, speech styles, and number of
utterances of the three characters.

Figure 3 shows the scatter plot of the first

5While our style-sensitive embeddings are based on co-
sine distance, the k-means and the Ward’ methods use eu-
clidean distance. Therefore, we normalized the speech style
embeddings prior to the application of k-means and Ward’s
methods.

6https://ncode.syosetu.com/n1860fv/
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Figure 2: Dendrogram of the Results of Clustering Speech Style Vectors using the Ward’s Method.

Character
(traits)

Speech Style #Utterance

Marie (aristocratic woman)
casual female,

polite
1,177

Kyuros (aristocratic man) only male 1,030
Mio (housemaid) only housemaid 450

Table 5: Speech Style and Number of Utterances of the
Three Characters in a Novel

Figure 3: Scatter Plot of the Style-sensitive Sentence
Embeddings of the Three Characters in a Novel

and second principal components7 of the style-
sensitive sentence embeddings for all utterances of
three characters. While utterances from the iden-
tical character tend to cluster together, it is evident
that the distribution of the embeddings is scattered
to some extent even for an identical character.

Focusing on the variation of the distribution for
each character, it is evident that the variation in
Mio’s style-sensitive sentence embeddings, who
always uses typical polite speech reminiscent of
a housemaid’s speech, is small, while the vari-
ation in Marie’s style-sensitive sentence embed-
dings, who switches between “casual female” and
“polite” depending on the conversation partner, is
larger. In other words, the distribution of the style-
sensitive sentence embeddings can be considered

7The cumulative proportion up to the second principal
component is 41.9%.

as a characteristic of the character’s speech style.

8 Conclusion

In this study, we proposed a speech style embed-
ding model that produces style-sensitive sentence
embeddings capable of evaluating the similarity
of speech styles. The speech style embedding
model was constructed using contrastive learn-
ing with training data consisting of pairs of ut-
terances with similar/dissimilar speech styles col-
lected from consecutive dialogues in novels. We
demonstrated that this speech style embedding
model not only captures the similarity of speech
styles, but also the strength of politeness, mas-
culinity, and femininity. Furthermore, we con-
firmed the formation of characteristic speech style
clusters such as female and ninja speech styles
through clustering of style-sensitive sentence em-
beddings using the Ward’s method. In addition,
we analyzed the variation of style-sensitive sen-
tence embeddings across the entire utterances of
all the characters in a novel.

Future challenges include constructing a dataset
for evaluating speech style similarity with multi-
ple annotators and generating style-sensitive sen-
tence embeddings that take into account the con-
versation partners and surrounding situations. Ad-
ditionally, it is necessary to incorporate training
methodologies such as the triplet objective func-
tion (Reimers and Gurevych, 2019) and in-batch
negatives (Gao et al., 2021) to improve model per-
formance. It is equally essential to conduct per-
formance comparison experiments with preced-
ing studies (Akama et al., 2018; Miyazaki et al.,
2021b) and verify the usefulness of style-sensitive
embeddings in downstream tasks such as control-
ling the speech style of dialogue systems.
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Abstract
Peer review is a fundamental component of
the academic publishing process, ensuring the
quality and validity of research findings. How-
ever, predicting peer-review aspect scores ac-
curately can be challenging due to the small
size of publically available datasets on the
target aspect of scores. To address this is-
sue, we propose an intermediate-task transfer
learning method to further improve the perfor-
mance of pre-trained models. The method as-
sumes an intermediate task that is related to
the target task to learn beneficial features be-
fore fine-tuning it on a target task. Our ex-
periments demonstrate that intermediate-task
transfer learning helps improve the perfor-
mance of the pre-trained model on peer re-
view score prediction. Our code is available
at https://github.com/panitan-m/
peerreview-intermediate-trans.

1 Introduction

In recent years, there has been a surge volume of
submissions to AI-related international conferences
and journals. This upsurge has consequently inten-
sified the difficulties of the review process. To
alleviate the burgeoning reviewers’ workload, em-
ploying an approach to reject papers with evidently
low quality serves as a practical strategy. On the
other hand, constructive critique extended to au-
thors about the shortcomings in their submissions
can encourage refinement and enhancement of their
work. In response to this challenge, the develop-
ment of automatic Peer Review Score Prediction
systems has emerged. These systems score a nu-
merical evaluation of academic papers, assessing a
spectrum of aspects like “clarity" and “originality".

A pioneering contribution to the field comes in
the form of the PeerRead dataset. This publicly
accessible corpus of scientific peer reviews, intro-
duced by Kang et al. (2018), serves as a valuable
resource for researchers with diverse objectives.
These objectives are ranging from classification of

paper acceptance (Ghosal et al., 2019; Deng et al.,
2020; Maillette de Buy Wenniger et al., 2020; Fytas
et al., 2021), prediction of review aspect scores (Li
et al., 2020; Wang et al., 2020; Muangkammuen
et al., 2022), to citation recommendation (Jeong
et al., 2019), and predicting citation counts (van
Dongen et al., 2020). In this paper, we focus on
review aspect score prediction.

Unsupervised pre-training SCIBERT (Beltagy
et al., 2019) was utilized on various downstream
scientific NLP tasks, including biomedical domain
(Li et al., 2016; Nye et al., 2018), computer sci-
ence domain (Luan et al., 2018; Jurgens et al.,
2018), and multiple domains (Cohan et al., 2019).
One promising approach for further enhancing pre-
trained models that have been shown to be broadly
helpful is to first fine-tune a pre-trained model on an
intermediate task, before fine-tuning again on the
target task, also referred to as Supplementary Train-
ing on Intermediate Labeled-data Tasks (STILTs)
(Phang et al., 2019; Pruksachatkun et al., 2020).
STILTs explore the potential of incorporating a
secondary phase of pre-training using data-rich in-
termediate supervised tasks, with the aim of im-
proving the effectiveness of the resulting target task
model. In this work, we perform comprehensive ex-
periments using the Aspect-enhanced Peer Review
(ASAP-Review) dataset (Yuan et al., 2022) that we
extract review aspect sentiments for our intermedi-
ate task training. The ASAP-Review dataset is a
collection of peer-reviews with fine-grained anno-
tations of review aspect information. For example,

“The paper is well-written and easy to follow" shows
a positive sentiment of clarity aspect and a high
score of clarity aspect. These aspect sentiments can
be beneficial for the review aspect score prediction.
We extract the review aspect sentiment from the
review texts of a paper and use it as a target label
for that given paper. We ran our experiments on 6
intermediate tasks and 7 target tasks, resulting in a
total of 42 intermediate-target task pairs.
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 (1) Aspect Sentiment Extaction
(ASAP Review)

Positive + Reject___ 
Positive + Accept___

Pretrained
SciBERT

(2) Intermediate Task Training
Aspect Sentiment: 6 Tasks 

(3) Target Task 
Fine-tuning
(PeerRead)

Aspect Score: 7 Tasks

Figure 1: Overview of our pipeline framework. It comprises aspect sentiment extraction, intermediate-task training,
and fine-tuning on the target task.

In summary, our main contributions are:

• This work is the first to introduce an
intermediate-task transfer learning method to
peer-review score prediction.

• We propose a method to extract aspect senti-
ments for intermediate-task training for peer-
review score prediction.

• We conduct experiments to demonstrate the
efficacy of each intermediate task, resulting in
performance gains across every review aspect
score prediction.

2 Related Work

Artificial Intelligence is a crucial tool for academic
peer review, and it is a rapidly growing field that
demands more attention from the academic commu-
nity. The renowned Toronto Paper Matching sys-
tem, developed by Charlin and Zemel (2013), was
designed to match papers with appropriate review-
ers. Notably, Price and Flach (2017) conducted
an in-depth examination of the diverse methods
for harnessing computational support in the peer
review system. Mrowinski et al. (2017) explored
the application of evolutionary algorithms to en-
hance editorial strategies within the peer review
process. Ghosal et al. (2018a,b) delved into an
investigation of the impact of various features in
the editorial pre-screening process. Wang and Wan
(2018) explored a multi-instance learning frame-
work for conducting sentiment analysis on peer
review texts. Ghosal et al. (2019) investigated the
impact of reviewer sentiment expressed in peer re-
view texts on the outcome of the review process.
Li et al. (2020) proposed a multi-task learning ap-
proach that automatically selects shared structures
and auxiliary resources for peer review prediction.

More recently, Muangkammuen et al. (2022) ex-
plored a semi-supervised learning for improving
peer review score prediction.

Our investigations are currently centered on a
portion of the PeerRead dataset that has been made
available to the public (Kang et al., 2018). Our ap-
proach achieves performance improvement on the
peer review aspect score prediction task compared
to Kang et al. (2018). We attribute this to the use
of intermediate task training and the extraction of
aspect sentiment in our approach.

3 Methods

We present a simple intermediate-task transfer
learning for peer review score prediction. Figure
1 illustrates the method pipeline that consists of
the following steps: aspect sentiment extraction,
intermediate-task training, and fine-tuning on the
target task.

3.1 Aspect Sentiment Extraction

To further train the pre-trained model SCIBERT on
the intermediate tasks, we extract aspect sentiments
from the ASAP-Review dataset (Yuan et al., 2022)
to utilize them for our intermediate-task training.
The ASAP-Review dataset comprises peer-review
data from ICLR and NeurIPS. We use only ICLR
data as it contains both accepted and rejected pa-
pers which are the same as the target task dataset,
PeerRead.

Originally, this dataset contained review texts
with sequence labels of fine-grained annotation of
aspect information. An example of the review anno-
tations is shown in Table 1. We utilize 6 aspects in
the dataset, which are Clarity (CLA-i), Meaningful
Comparison (COM-i), Motivation/Impact (MOT-i),
Originality (ORI-i), Soundness/Correctness (SOU-
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Summary Soundness + Motivation + Clarity +
The authors prove a generalization guarantee for deep neural networks with ReLU activations, in terms
of margins of the classifications and norms of the weight matrices. They compare this bound with a
similar recent bound proved by Bartlett, et al. While strictly speaking, the bounds are incomparable in
strength, the authors of the submission make a convincing case that their new bound makes stronger
guarantees under some interesting conditions. The analysis is elegant. It uses some existing tools but
brings them to bear in an important new context, with substantive new ideas needed. The mathematical
writing is excellent. Very nice paper. I guess that networks including convolutional layers are covered
by their analysis. It feels to me that these tend to be sparse, but that their analysis still my provides
some additional leverage for such layers. Some explicit discussion of convolutional layers may be
helpful.

Table 1: An example of review annotations of ASAP-Review dataset. “+" denotes positive sentiment. Negative
sentiment does not occur in this example.

Aspects Negative Positive Total
CLA-i 1,560 1,003 2,563
COM-i 1,738 180 1,918
MOT-i 525 1,453 1,978
ORI-i 1,257 1,186 2,443
SOU-i 1,789 933 2,722
SUB-i 1,726 505 2,231

Table 2: Statistics of the aspect sentiments of ASAP-
Review dataset for the intermediate-task training.

i), and Substance (SUB-i). Each aspect is also
marked with a sentiment, positive or negative. We
count the number of positives and negatives of each
aspect in the reviews. We use the majority polarity
as a label for the reviewed paper since one paper
consists of multiple reviews. We further remove
the samples having a positive aspect label with a
reject decision and having a negative aspect label
with an accept decision to amplify the characteris-
tic in the data. The statistics of the ASAP-Review
dataset after aspect sentiment extraction are shown
in Table 2. To distinguish it from the target tasks,
i.e., review aspect score predictions, we add "-i" to
each intermediate task.

3.2 Intermediate Task Training

We fine-tune SCIBERT model on each interme-
diate task, following the standard procedure of
fine-tuning a pre-trained model on a target task
as described in Devlin et al. (2019). Instead of
multi-task training (Liu et al., 2019), we use single
intermediate-task training to examine the effect of
each intermediate task independently. The objec-
tive of these intermediate tasks is to predict the
sentiment for each review aspect. We train the

Aspects Total
Clarity (CLA) 136
Meaningful Comparison (COM) 132

Impact (IMP) 132
Originality (ORI) 136
Soundness/Correctness (SOU) 136
Substance (SUB) 136
Overall Recommendation (REC) 136

Table 3: Statistics of the PeerRead ACL 2017 dataset
for the target tasks.

model to minimize the Binary Cross-Entropy loss.

3.3 Target Task Fine-tuning

After intermediate-task training, we fine-tune our
models on each target task individually. Our target
task is peer-review score prediction, which con-
sists of 7 aspects shown in Table 3. The PeerRead
dataset contains peer-review datasets from several
conferences. Among them, we chose the ACL 2017
dataset for our experiment as it includes aspect
scores that are fully annotated. In this dataset, an
input paper has multiple review scores, we use the
rounded average score of each aspect as the target
score ranging from 1 to 5. We fine-tune the models
to minimize the Categorical Cross-Entropy loss of
five classes.

4 Experiments

4.1 Experimental settings

We used the pre-trained model scibert-
scivocab-uncased in all experiments. For
each intermediate and target task, we used a peak
learning rate at 5 × 10−5 and a dropout rate of
0.1. We used a batch size of 8 and a maximum se-
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Figure 2: Performances on intermediate tasks in accu-
racy at each checkpoint.

quence length of 512. We trained our models using
the AdamW (Loshchilov and Hutter, 2019) with
linear decay and 0.2 warm-up ratio. We performed
our experiments on NVIDIA GeForce RTX 3090
GPUs.

A pipeline with one intermediate task works as
follows: First, we split the extracted ASAP-Review
data into training and validation sets with a 9:1
ratio. We fine-tuned SCIBERT on the intermediate
task for 10 epochs and saved a checkpoint at the
end of each epoch, resulting in 10 checkpoints. The
performance of each intermediate task evaluated
on the validation set is shown in Figure 2. The
performances were quite stable during fine-tuning,
except for SUB-i. We then fine-tuned copies of
the resulting models separately on each of the 7
target tasks. We chose the result of the checkpoint
that performs best on the target task. Because the
test set of the PeerRead dataset is very small, i.e.,
only 7 samples, most of the results reported by
Wang et al. (2020) can be obtained by just using
the majority score as a prediction, and it could lead
to inappropriate evaluation. Instead of using the
original sets to perform the experiments, we ran
the same pipeline on 5-fold cross-validation three
times. This gave us 15 observations for each result
in our experiments.

We compared our method to the PeerRead (Kang
et al., 2018). We re-implemented their model
based on CNN and kept the same hyperparame-
ters. GloVe 840B embeddings (Pennington et al.,
2014) were utilized as input word representations,
without tuning. The outputs from the CNN model
are fed into a max pooling layer and the final linear
layer. We evaluated their model in our experimen-
tal settings.

Aspects PeerRead Ours
CLA 67.4 (22.5) 69.3 (27.4)
COM 55.0 (20.4) 62.1 (33.9)
IMP 80.2 (30.3) 82.0 (37.2)
ORI 47.8 (21.5) 56.9 (50.7)
SOU 50.2 (21.6) 60.5 (41.9)
SUB 67.1 (21.1) 68.6 (31.2)
REC 58.8 (23.5) 64.0 (36.4)
Avg. 60.9 (23.0) 66.2 (37.0)

Table 4: Results compared with the method in PeerRead
(Kang et al., 2018). Each cell indicates accuracy (macro
F1). Bold indicates the best result.

4.2 Results and Discussion

Figure 3 shows the differences in target task perfor-
mances between the baselines and models trained
with intermediate-task training, each averaged
across three 5-fold cross-validations. A positive
result indicates a successful transfer.

We observed that transfer learning, almost ev-
ery intermediate-task training, helps improve the
performance of the target task. The Sound-
ness/Correctness score prediction gains more per-
formance from intermediate-task training with
around 10% on both accuracy and macro F1. Over-
all our best results are better than those of the
baselines around 4.1% and 8.4% on average, in
accuracy and macro F1, respectively. The best im-
provements in accuracy are from ORI-i on Sound-
ness/Correctness at 9.6%. The best improvement
in macro F1 score is up to 13.9% from ORI-i on
Overall Recommendation. On average across ev-
ery target task, the ORI-i is the most successful
intermediate task that increases 3.7% and 5.8% in
accuracy and macro F1, respectively.

Interestingly, we did not find the largest improve-
ment from the same aspect of the intermediate task
(sentiment prediction) and the target task (score
prediction), except for the Originality on the ac-
curacy metric. Instead, the score prediction task
gains more performance from other aspects of the
intermediate task.

We also compared our method to the PeerRead
(Kang et al., 2018) which is shown in Table 4. Our
method performed better than the PeerRead model
on every task and increased 5.3% and 14% on av-
erage, in accuracy and macro F1, respectively. It
outperformed the PeerRead model by 10.3% on
Soundness/Correctness in term of accuracy and by
29.2% on Originality in term of macro F1.
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(a) Accuracy

(b) Macro F1

Figure 3: Transfer learning results between intermediate and target tasks. Baselines on the second rightmost
column are models that are fine-tuned without intermediate-task training. Our best results from the models with
intermediate-task training are on the rightmost column. Each cell shows the difference in performance between
the baseline and model with intermediate-task training. The cool and warm tone colors indicate improvement, and
deterioration, respectively.

4.3 Ablation Study

Our approach to extracting the ASAP-Review
dataset for intermediate-task training contains two
strategies, i.e., aspect sentiment extraction from
review text and removing a sample that has a pos-
itive label with a reject decision and vice versa.
To examine how each strategy contributes to the
performance of the target task, we consider the
following variants of our intermediate task:

a) Decision - Using decision prediction as an in-
termediate task. Here, the decision prediction
task predicts whether a paper gets accepted
or rejected. The statistics of decision data are
shown in Table 5.

b) Aspect - Using aspect sentiment data without
removing a sample. Here, the sample has a
positive label with a reject decision and vice
versa. The statistics of the data are shown in
Table 6.

c) Aspect + Decision - Our full method using
two strategies altogether. By incorporating
two strategies, the quantity of data is de-

Accept Reject Total
3,295 1,855 5,150

Table 5: Statistics of the decision data.

Aspects Negative Positive Total
CLA-i 2,430 1,626 4,056
COM-i 2,889 264 3,153
MOT-i 773 2,655 3,428
ORI-i 1,837 1,984 3,821
SOU-i 2,700 1,357 4,057
SUB-i 2,901 760 3,661

Table 6: Statistics of the aspect polarity data without
removing a sample that has a positive label with a reject
decision and vice versa.

creased by over 30% from the Aspect.

Table 7 shows the results of different strategies
of the intermediate task training. We can see that
Decision helps improve the pre-trained model per-
formance in almost every target task except Sub-
stance on macro F1. Aspect further improves the
pre-trained model compared to Decision in almost
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Target Task Baseline
Intermediate Task

Decision Aspects Aspects + Decision
CLR 66.7 (23.8) +0.4 (+1.4) +0.4 (+1.3) +1.6 (+3.6)
COM 58.6 (26.7) +1.2 (+4.8) +2.3 (+6.4) +3.5 (+7.2)
IMP 80.5 (31.7) +1.3 (+5.8) +2.0 (+7.7) +1.5 (+5.5)
ORI 49.8 (40.4) +4.2 (+5.1) +3.0 (+3.7) +7.1 (+10.3)
SOU 50.9 (31.7) +5.2 (+6.8) +4.2 (+6.4) +9.6 (+10.2)
SUB 67.9 (23.2) +0.2 (-0.2) +1.4 (+4.3) +0.7 (+8.0)
REC 59.1 (22.5) +1.9 (+7.1) +3.2 (+9.2) +4.9 (+13.9)
Avg. 62.1 (28.6) +2.1 (+4.4) +2.4 (+5.6) +4.1 (+8.4)

Table 7: Results on the variants of the intermediate task. The baseline column indicates the results without
intermediate-task training. The other columns show the difference in performance between the baseline and model
with intermediate-task training. Each cell indicates an improvement in accuracy (macro F1 score) compared with
the baseline. Bold indicates the best result.

every target task and has a better performance on
accuracy and macro F1 on average. This indicates
that the aspect sentiment data contains richer in-
formation for review aspect score prediction com-
pared to the decision data. In contrast, the decision
data shows more relevance on the Originality and
Soundness/Correctness score predictions than as-
pect sentiment data. One possible reason for this
is that they are the main aspect of the reviewer’s
judgment.

As we can see from Table 7 that combining as-
pect polarity data with a decision strategy leads to a
better result on almost every target task and the best
result on average in both accuracy and macro F1
score. Although the data size of Aspect + Decision
is smaller than that of Aspect, the average result
of Aspect + Decision is still better. This shows
that the characteristic is more important than the
quantity of the data for intermediate-task training.

4.4 Error Analysis

We plot the confusion matrix between truth and
model prediction on test data in Figure 4, which
shows that the prediction scores of our model tend
to be close to the true values. The model tends to be
biased to a score of 4, which is the most common
score in the dataset. The model was able to classify
some papers with a score of 2 or 3 correctly. In con-
trast, it was unable to correctly classify papers with
a score of 1 or 5. However, it still rated papers with
a score of 5 higher than a score of 1. The shortage
of training samples for scores 1 and 5 (less than
5 samples) complicates its prediction. Incorporat-
ing techniques to handle imbalanced datasets is an
interesting direction for future work.

Figure 4: Confusion matrix of true and prediction of
Overall Recommendation scores.

5 Conclusion

In this study, we investigated the impact of
intermediate-task transfer learning on peer-review
score prediction. Specifically, we fine-tuned a pre-
trained model SCIBERT on an intermediate task
before fine-tuning again on the target task. We
proposed a method to extract the ASAP-Review
dataset for intermediate-task training to improve
peer-review score prediction. The experimental re-
sults showed the effectiveness of the intermediate-
task training as it attained a better result than the
baseline on every target task in both accuracy and
macro F1. Future work will include (1) extending
the method to process longer sequences to cover
the full length of the paper, and (2) incorporating
multiple tasks for the intermediate-task training to
exploit related information between intermediate
tasks.
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Abstract

Lip reading recognition aims to predict what
people are saying based on the movements of
their lips. Most previous works used continu-
ous images to represent lip movements and pre-
dict the corresponding textual contents, which
does not achieve good performance. In this
work, we explore a new approach to synthesiz-
ing audio through lip movements by introduc-
ing face landmarks for representing the motion
features of the face in 3D space and synthe-
sizing the corresponding audio results directly.
We propose the FaceLandmarks2Wav model
for a preliminary implementation of the above
idea. The experimental results confirm that
face landmarks can adequately represent facial
movement features, and the structure of Face-
Landmarks2Wav could synthesize speech re-
sults close to natural human voices, only using
the face landmarks sequence.

1 Introduction

The relationship between human speech lip move-
ments and pronunciation has been confirmed in
many previous studies (Cappelletta and Harte,
2012; Shaikh et al., 2010). Trained profession-
als can predict what others say by observing their
lip shape. People with hearing impairment use a
similar method to understand what others say when
communicating. Visual speech recognition uses the
relationship between lip movements and pronunci-
ation to predict what a speaker says by capturing
videos of their lip position. Related research has
many practical applications, such as assisting peo-
ple with acquired aphasia to communicate with
others.

Research related to computer lip recognition gen-
erally extracts lip gesture features from continuous
images of videos (Ma et al., 2022; Huang et al.,
2022; Wang et al., 2022). Early studies mainly
used image transformation methods to reduce the
dimensionality of feature vectors. (Min and Zuo,

2011) performed lip visual feature extraction based
on 3D-DCT and 3D-HMM models, which focused
on the primary information of images in the low-
frequency band. With the development of research
in computer vision, the extraction of lip movement
features in images using deep learning networks
such as CNN (Iezzoni et al., 2004; Fung and Mak,
2018; NadeemHashmi et al., 2018; Chung and Zis-
serman, 2016) has also received increasing atten-
tion. Noda et al. (2014) used a CNN-based multi-
layer network to extract feature sequences from lip
images and modeled them by GMM-HMM. Garg
et al. (2016) used LSTM networks to extract lip
movement in the temporal dimension information.

Current research has primarily used continuous
images of the speaker’s face to illustrate lip move-
ments. However, video is not the most intuitive
way to represent lip movements. The video sam-
ples contain much redundant information, requiring
a large-scale network to locate the speaker’s lips
and extract movement features accurately. Even
then, redundant information can also interfere with
model predictions. For example, the model relies
on the facial details of the speaker in the video and
may not make accurate estimations when encoun-
tering an unseen speaker, which is more common
when training the model with person-specific video
datasets. In addition, the possible facial rotation
of people while speaking can cause the camera to
not continuously capture the face of the picture,
which limits the application scenarios of lip recog-
nition research. To solve the problems in video
lip recognition, we introduce face landmarks to
represent facial movement states in lip recognition.
Face landmarks are a series of coordinate points
annotated on the human face, often used to track
the positional states of facial features.

In this study, we combine face landmarks in the
temporal dimension into a sequence to represent the
movement features of the face in three-dimensional
space. Extract facial movement features from fa-
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cial landmarks sequence by an encoder consisting
of multilayer convolutional neural networks and
LSTM, and use an autoregressive decoder to syn-
thesize the audio close to the speaker’s pronuncia-
tion.

2 Methods

We refer to the method used by Shen et al. (2018)
in the text-to-speech task. Our model does not
directly synthesize the audio waveform from the
lip movement sequence. Instead, it predicts the mel
spectrogram of the corresponding audio segment
and uses a vocoder to convert the mel spectrogram
to audio results. Assume that the lip movement
sequence are represented as L = (L1, L2, · · · , LT )
and the mel spectrogram are represented as M =
(M1,M2, · · · ,MT ′), and the mel spectrogram are
represented as follows:

S =(S1, S2, · · · , ST ), Si = (s1, · · · , sN ) (1)

L =(L1, L2, · · · , LT ′), Li = (P1, · · · , PF ) (2)

Where T and T ′ are the frame numbers of the lip
movement sequence and the mel spectrogram in the
same video clip, F is the number of 3D landmarks
in the facial feature part selected in the experiment.
N is the number of mel filters.

We can assume that the representation of the
target mel spectrogram in the t′ frame is highly
correlated with the lip movements of the speaker
at the exact moment. However, since there are
possibilities where different phonemes share the
same viseme, to determine the mel spectrogram of
the t′ frame, the model should also reference the
context of the lip movement feature. We model the
relationship between the mel spectrogram and lip
movements using Eq. (3).

Mt′ = f
(
Lk∈(t±δ),M<t′

)
(3)

The encoder refers to context information to ex-
tract lip movement features. The decoder uses
an autoregressive method to synthesize the corre-
sponding mel spectrogram frame by frame. The
model structure is shown in Fig. 1.

2.1 Input/Output Representation
2.1.1 Input Representation
FaceLandmarks2Wav model accepts face land-
marks as input. Each landmark contains three-
dimensional coordinate information. Therefore,
the tensor size of the model input is T × F × 3,

where F is the number of landmarks used in the
experiment, and T is the number of time steps of
the landmarks sequence, each training sample uses
90 continuous frames of image content.

2.1.2 Output Representation

The target synthesized by our model is the audio
content corresponding to the given video segment.
FaceLandmarks2Wav does not directly synthesize
audio results but predicts the corresponding mel
spectrogram. We sample the audio at a sampling
rate 16kHz, set the window size to 50ms, shift
distance per frame to 12.5ms, and set the number
of mel filters to 80. As the model obtained the
corresponding mel spectrogram, we use the Griffin-
Lim algorithm (Griffin and Lim, 1984) to transform
it into the corresponding audio wave.

2.2 Spatio-temporal Face Encoder

Previous studies (Bai et al., 2018; Xu et al., 2019)
have demonstrated the effectiveness of CNN for
feature extraction in the time domain. Therefore,
we stacked convolutional blocks to extract move-
ment features from face landmarks input. The input
dimension of the encoder is T × F × 3. Unlike
processing images, the number of face landmarks
F corresponds to different convolution channels,
which helps the convolution kernel respond to all
facial landmarks.

We set multiple convolution blocks in the en-
coder, and each convolution block increases the
number of channels used to represent facial fea-
tures. The number of channels of each convolu-
tion block is set according to the face landmarks
used in the experiment. Residual connections and
batch normalization are used between CNN blocks.
The last layer of convolutional blocks will sample
the three-dimensional coordinate information into
one dimension, and the encoder will permanently
preserve the time dimension. The convolutional
network’s final output size is T × F ′, and F ′ is the
number of features modeled by the encoder for a
single time step.

The encoder uses a bidirectional LSTM network
(Hochreiter and Schmidhuber, 1997) to extract
short-term contextual features. This method allows
the feature modeling of face landmarks to contain
more contextual information after the convolutional
network.
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Figure 1: FaceLandmarks2Wav model structure. The encoder uses a 2D convolutional network to extract high-level
lip movement features from landmarks. The decoder predicts the mel spectrogram corresponding to the audio result
autoregressively.

2.3 Attention-based Speech Decoder

To synthesize smoother and natural speech results,
our model refers to the method used in Tacotron2
by Shen et al. (2018). The Tacotron2 is a model
for synthesizing audio from text, which uses a
sequence-to-sequence network with an attention
mechanism to process the text features extracted by
the encoder and synthesize a mel spectrogram close
to the natural human voice. We use a Tacotron2-
like decoder to autoregressively synthesize the mel
spectrogram frame by frame from the facial move-
ment features encoded by the encoder. When the
decoder synthesizes the mel spectrograms output
of the Tk time step, it will refer to the decoder out-
put of Tk−1 time step and calculates the attention
together with the lip movement high-level features
extracted by the encoder.

The attention network contains a special location
layer (Chorowski et al., 2015), which accepts the
accumulated attention weights from previous time
steps as an additional condition, which can help the
attention network to calculate the attention weights
forward and prevent the decoder from falling into
repeated patterns. Such a decoder structure con-
tributes to more natural audio results for model
synthesis.

2.4 Loss Function

The optimization goal during model training is min-
imizing the hybrid loss between the synthetic mel
spectrogram and the ground truth for end-to-end
model training. The hybrid loss function is shown
in Eq. 4, and α is the weight used to adjust the loss

function and is set to 0.5 in the experiment.

Lall = α · L1 + LMSE (4)

3 Benchmark Datasets and Training
Details

3.1 Datasets
Accurate 3D face landmarks can be annotated on
faces using special devices such as the True Depth
camera on the iPhone. However, since face land-
mark is a novel way to describe lip movements,
there is no previous research on lip recognition us-
ing similar methods. To compare with those studies
using video data, we use the face landmarks extrac-
tor to extract the face landmarks from the existing
video dataset. Build the face landmarks dataset
based on the video dataset. We chose the Lip2Wav
dataset from Prajwal et al. (2020) as the source of
lip recognition video data, which collects about 120
hours of video data from Youtube, including facial
images of different speakers when they spoke and
divided them into different sub-datasets according
to the different speakers in the video. It is very suit-
able for the model to learn the lip synthesis style of
a specific speaker.

We chose the Media Pipe Face Mesh model
(MPFM) proposed by Grishchenko et al. (2020)
as the face landmarks extractor. The MPFM model
could provide 478 3D landmark coordinates of the
whole face range. This model also optimizes the
face landmarks labeling of continuous images and
reduces the jitter of landmarks between frames.
Those features make the MPFM model more suit-
able for labeling face landmarks on video data.
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After getting the face landmarks on the video
data, we normalize the sequence of time-series
face landmarks using Eq.(5). This function will
make the coordinates of the face landmarks have
appropriate sparsity.

c← 1

3n

n∑

i=1

3∑

j=1

pij

m← max
(
||pij − c||

)

p′
ij ←

1

m
(pij − c)

(5)

Since the video in the Lip2Wav dataset is cap-
tured by fixed camera position, some of the video
clips cannot contain the range of the human face,
and this part of the samples can not be used in train-
ing. To ensure that the encoder can better model
the lip-movement contextual features, we set the
video window to 90 frames, and this means that
only face landmarks extractors can recognize 90
consecutive face frames will be used as samples for
model training. The video lip-synthesis model used
for comparison was also trained using the same
data range, and the number of samples contained
in each sub-dataset is shown in Table 1.

Table 1: The number of samples in each sub-dataset
when using different face landmarks extractors.

sub-datasets Media Pipe
FaceMesh

Face
Alignment

chem 753,834 572,198
chess 787,963 547,220

eh 819,065 739,483

3.2 Details of Training

We use the pre-trained face landmarks extraction
model to recognize and mark faces in the video
data frame by frame. When using Media Pipe Face
Mesh, the video mode will be turned on to reduce
the jitter of landmarks. Our model sets a multi-
layer convolutional network in the encoder, which
finally represents the movement features of each
frame as a high-dimensional feature vector as the
hidden dimension of the encoder. Taking the ex-
periment with 80 lip landmarks as an example, we
sequentially set the number of channels of the con-
volutional block in the encoder to 120, 240, and
320, and the final hidden dimension is set to 384.

The batch size during model training is set to 32.
The learning rate will increase linearly to 0.001 at

the beginning of training and gradually decay in
subsequent iterations. We used Adam (Kingma and
Ba, 2014) as the optimizer and trained the model
with about 600,000 iterations. The choice of these
parameters was derived from the good results ob-
tained during the experiments.

3.3 Evaluation Metrics

We measure whether the audio synthesized by the
model is close to the natural human voice regarding
intelligibility and audio quality. We will use the
following three metrics to compare our model with
previous studies: Short-Term Objective Intelligibil-
ity (STOI) (Taal et al., 2010), Extended Short-Term
Objective Intelligibility (ESTOI) (Jensen and Taal,
2016), and Perceptual Evaluation of Speech Qual-
ity (PESQ) (Rix et al., 2001). In addition to the ob-
jective audio quality, we will compare the model’s
resource consumption and convergence time during
the training process and demonstrate the compre-
hensive advantages of the unique solution of using
face landmarks to represent lip movements from
many aspects.

4 Results and Disscussion

This section presents a comparative analysis to eval-
uate the performance differences between Face-
Landmarks2Wav and previous deep-learning mod-
els that use videos for lip-speech recognition. We
choose the Lip2Wav as the baseline model (Pra-
jwal et al., 2020), a lip-speech model that can syn-
thesize audio results close to natural human voice
from facial videos. We trained different models on
the same dataset using similar settings and com-
pared the differences in the number of parameters,
Multiply-Accumulate operations (MACs), and con-
vergence time of the models during training. The
results are shown in Table 2. We used a smaller
batch size when training Lip2Wav due to the lim-
ited video memory capacity of the graphics card
used, and even so, the FaceLandmarks2Wav also
has more advantages in terms of convergence time
and other metrics.

Table 2: Comparison of model details and training time.

Models Lip2Wav Ours
Batch Size 16 32
Parameters 39.8 M 31.9 M

MACs 709.3 G 178.4 G
Single Iteration 1.4 sec 0.4 sec
Convergence ∼ 140 hours ∼ 50 hours
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During training, we record the attention image
generated by the FaceLandmarks2Wav. The hori-
zontal and vertical axes of the image represent the
time steps of the decoder and the encoder, respec-
tively. The values represent the degree of atten-
tion paid to the encoder’s specific time step when
the decoder’s attention module produces the corre-
sponding time step results. Figure 2 shows how the
attentional alignment of the model changes during
the training process. The attention image gradually
forms a diagonal image as the training progresses,
meaning that the decoder refers to the lip features
extracted by the encoder at nearby moments when
synthesizing the audio results, consistent with the
assumption of Eq 3. The attention image at the
end of training is shown in Figure 2f, implying
that the model could already learn the high-level
features of facial motion from the input face land-
marks sequence and synthesize the corresponding
audio based on these features.

After the training, we compared the synthetic
audio quality and intelligibility scores of the two
models on the validation set, and the results are
shown in Table 3. Compared with Lip2Wav, Our
FaceLandmarks2Wav has a significant advantage
in STOI and PESQ scores, and the ESTOI scores
of Lip2Wav are relatively better. While synthesiz-
ing high-quality audio, FaceLandmarks2Wav has
shorter training time, inference time, and smaller
model sizes than Lip2Wav. Therefore, in scenar-
ios sensitive to video memory usage and requir-
ing high real-time performance, Our approach of
synthesizing audio using face landmarks has more
advantages.

Discussion. The above experiments prove that
using face landmarks can represent the attributes
of facial movement well. The experimental results
show that using the FaceLandmarks2Wav model
can synthesize natural and smooth speech results,
and the synthesized audio is not inferior to the
model using video data as input in terms of intelli-
gibility and quality. Our proposed model structure
can converge faster during the training process, and
the requirements for the training environment are
further reduced. The small model size allows it
to be trained in environments with limited hard-
ware, such as wearable devices. We also imple-
mented corresponding ablation studies to compare
the effect of face landmarks extracted differently
on model performance.

Table 3: Performance comparison between our model
and previous lip speech synthesis studies. The column
of total result shows the arithmetic mean of the results
of different sub-datasets.

Sub-dataset Metrics Models
Lip2Wav Ours

chem
STOI 0.414 0.478

ESTOI 0.212 0.193
PESQ 1.130 1.149

chess
STOI 0.168 0.217

ESTOI 0.101 0.073
PESQ 1.143 1.151

eh
STOI 0.256 0.367

ESTOI 0.012 0.009
PESQ 1.302 1.318

total
result

STOI 0.279 0.354
ESTOI 0.105 0.092
PESQ 1.192 1.201

5 Ablation Studies

As an initial study of using face landmarks to rep-
resent facial movement features, the effect of dif-
ferent ranges of face landmarks on the ability to
represent facial motion features is one of our pri-
mary concerns, and we designed the corresponding
ablation studies to explore this question.

We also try to use the Face Alignment Net-
work (FAN) proposed by Bulat and Tzimiropoulos
(2017) as an alternative face landmarks extractor,
which can annotate 68 2D-landmarks in the whole
face range and provide a way to estimate the depth
information.

Table 4: Train the model with different ranges of land-
marks. Training is performed on the chem sub-dataset.
WF stands for "Whole Face".

Extractor MPFM MPFM FAN
Contents WF Lips WF

Landmarks 478 80 68
Channel 600, 680, 720 120, 240, 320

Embedding 768 384 384
STOI 0.348 0.478 0.372

ESTOI 0.109 0.193 0.103
PESQ 1.048 1.149 1.034

The results of the ablation studies are shown in
Table 4, which also shows the model embedding
parameters for different settings of the number of
landmarks. Surprisingly, the training results us-
ing only the lip landmarks are superior to those
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Figure 2: Attention alignment images for FaceLandmarks2Wav

(a) Alignment image at 40K iterations (b) Attention image at 60K iterations (c) Alignment image at 80K iterations

(d) Attention image at 100K iterations (e) Attention image at 120K iterations (f) Alignment image at end of training

using the whole-face range landmarks. This phe-
nomenon is because the target audio synthesized
by the model is most closely associated with the lip
movements, and the input contains less additional
information, making it more advantageous to train
directly on the lip content. The experimental results
do not show significant differences for different ex-
tractors using different numbers of landmarks to
represent the full-face range of motion features.

On the other hand, when using the same face
landmarks extractor, the performance of 3D land-
marks is significantly better than that of 2D land-
marks, indicating that even the depth information
estimated by the extractor still provides more ef-
fective facial motion information to the encoder.
This phenomenon is important for our future work,
which means that the ability of face landmarks for
facial motion representation could be further im-
proved if landmark annotation is performed directly
on real faces using a custom device.

6 Conclusion and Future Work

In this study, we initially explored the possibility
of an innovative approach to characterize facial
motion using face landmarks. We proposed Face-
Landmarks2Wav, a model that synthesizes corre-
sponding lip reading audio based on face landmarks
and compared it with Lip2Wav, the lip reading
model that uses video data to synthesize audio re-
sults. Experimental results show that our proposed
model structure can synthesize relatively natural

and smooth audio structures and be trained in a
lower hardware environment. We also performed
ablation studies, showing that audio results synthe-
sized only using the lip range are even better than
those using the whole face range. In future work,
we hope to directly obtain the depth information
of lip movement through 3D camera equipment,
and more accurate face landmarks information will
help further improve the model’s performance.
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Abstract

Open-domain dialogue systems have started to
engage in continuous conversations with hu-
mans. Those dialogue systems are required to
be adjusted to the human interlocutor and eval-
uated in terms of their perspective. However, it
is questionable whether the current automatic
evaluation methods can approximate the inter-
locutor’s judgments. In this study, we analyzed
and examined what features are needed in an
automatic response evaluator from the inter-
locutor’s perspective. The first experiment on
the Hazumi dataset revealed that interlocutor
awareness plays a critical role in making auto-
matic response evaluation correlate with the in-
terlocutor’s judgments. The second experiment
using massive conversations on X (formerly
Twitter) confirmed that dialogue continuity pre-
diction can train an interlocutor-aware response
evaluator without human feedback while re-
vealing the difficulty in evaluating generated
responses compared to human responses.

1 Introduction

Along with the growth of open-domain dialogue
systems (Xu et al., 2022b,c; Bae et al., 2022;
Takasaki et al., 2023), it is crucial to develop auto-
matic methods that efficiently evaluate those sys-
tems. The automatic evaluations usually qualify
system responses for utterances sampled from hu-
man conversation logs (§ 2). Since Liu et al. (2016)
showed that automatic evaluation with a single ref-
erence response such as BLEU (Papineni et al.,
2002; Forgues et al., 2014) did not correlate with
human judgments due to the response diversity in
open-domain dialogue (Sato et al., 2017; Tsuta
et al., 2020), unsupervised reference-free meth-
ods and supervised methods that mimic human
judgments have become popular (Yeh et al., 2021).
However, these studies evaluate their methods in

*This affiliation is at the time of the study and differs from
at the time of publication.
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Figure 1: A discrepancy between interlocutor and out-
sider evaluations for open-domain dialogue systems.

terms of correlation with judges by third-party an-
notators (outsiders), not partaking in the dialogue.

Do the existing methods correctly evaluate the
dialogue systems? As illustrated in Figure 1, the
interlocutor and evaluators may prefer different yet
valid responses. Although Ghazarian et al. (2022)
experimentally confirmed a poor correlation with
outsider and interlocutor evaluations in terms of
appropriateness, they remain focused on outsider
evaluations. This study focuses on interlocutor
evaluations to enable an automatic evaluation from
the interlocutor’s perspective. In the experiment,
we concentrate on validating our ideas in terms of
engagement. Because this metric is more subjective
and varies across people.

In this study, for estimating the interlocutor’s
evaluations, we first analyze the effectiveness of
personalizing the evaluation model to the target in-
terlocutor. This is inspired by research on response
generation (Li et al., 2016; Xu et al., 2022b), as it
has been reported to be important to adjust (per-
sonalize) utterances to the interlocutor. For this
analysis, we used the Hazumi dataset (Komatani
and Okada, 2021), and confirmed that, even when
we train a supervised evaluator to mimic interlocu-
tor scores, it cannot accurately predict their scores
without making it aware of the target interlocutor.

Motivated by the lessons learned from the above
experiments, we then explore automatic response
evaluation from the interlocutor’s eye (§ 4). To
reduce the cost of annotation, we utilize a dia-
logue continuity prediction (DCP) task to train an

55



����������	


��	�

�������������	��������������������������

�����

�������

���������

�����������

�������
	�	���

�������
	������

������������	

��

�����	��������� ��� � ��� !�

Figure 2: Automatic response evaluation via dialogue
continuity prediction from the interlocutor’s perspective.

interlocutor-aware evaluator (Figure 2). This task
of estimating whether the target speaker will con-
tinue speaking or not can take advantage of labels
(conversation stop signals) that are naturally anno-
tated by the interlocutor in the conversation log.
Experimental results on a conversation log on X
(formerly Twitter) confirmed that the interlocutor-
aware evaluator can be learned through the DCP
task without human feedback while revealing the
challenge of evaluating the system responses.

2 Related work

Automatic evaluation of dialogue systems To
efficiently develop open-domain dialogue systems,
researchers have sought evaluation methods that
correlate with human evaluations. Since Liu et al.
(2016) showed that reference-based metrics (Pa-
pineni et al., 2002; Forgues et al., 2014) using
single reference responses do not correlate with
human judgments, some studies use multiple ref-
erence responses (Galley et al., 2015; Gupta et al.,
2019; Tsuta et al., 2020), while others train mod-
els by referring to human judgments (Lowe et al.,
2017; Ghazarian et al., 2020) or other cues indi-
cating valid responses (Tao et al., 2018; Ghazarian
et al., 2019; Gao et al., 2020; Mehri and Eske-
nazi, 2020b; Xu et al., 2022a; Ghazarian et al.,
2022). Recent studies (Mehri and Eskenazi, 2020a;
Zhang et al., 2021) rely on language comprehen-
sion skills of pre-trained language models such as
BERT (Devlin et al., 2019) and GPT-2 (Radford
et al., 2019). There are evaluation tasks from the
other perspective such as dialogue breakdown de-
tection (Higashinaka et al., 2016). The above stud-
ies were, however, developed to follow outsider
evaluations and do not assume evaluation from the
interlocutor’s eye, even though some recent dia-
logue systems are being adapted to interlocutors in
long-term conversations (Xu et al., 2022b,c; Bae
et al., 2022; Takasaki et al., 2023).

A few studies have elucidated the relationship
between user personality and the performance of
dialogue systems from a psychological perspec-
tive (Guo et al., 2021; Papangelis et al., 2022).
These studies suggest the importance of the inter-
locutor’s traits in evaluating dialogue systems.

User-oriented NLP tasks There are several user-
oriented (or personalized) NLP tasks in which users
prefer different outputs and hence the systems are
expected to be adjusted to match user preferences,
including hashtag recommendations on social net-
working sites (Kywe et al., 2012) and website rec-
ommendations (Mishra et al., 2015). Similarly,
for text generation tasks in which models have be-
come able to generate decent outputs, researchers
are starting to adapt the models to reflect individ-
ual preferences; examples of such tasks include
summarization (Díaz and Gervás, 2007), machine
translation (Mirkin and Meunier, 2015), text sim-
plification (Bingel et al., 2018), and dialogue sys-
tems (Liu et al., 2020; Cho et al., 2022). To evaluate
these systems, they need human judgments by the
system users, which low reproducibility prevents
us from efficiently developing the systems.

3 What is important to predict
interlocutor evaluations?

To analyze what features are important for predict-
ing interlocutor scores, we train score prediction
models with several settings and compare their per-
formances. Specifically, we analyzed the effect
of reference scores (e.g., interlocutor or outsider
scores) and interlocutor-aware personalization on
the evaluation models. Although Ghazarian et al.
(2022) confirmed a low correlation between inter-
locutor and outsider evaluations, we further con-
firmed that outsider evaluations do not help pre-
dict interlocutor scores. For this analysis, we used
the Hazumi dataset (Komatani and Okada, 2021),
which is an open-domain conversation in the form
of the Wizard of Oz experiment.

3.1 Hazumi dialogue datasets
For this analysis, we need a dataset that contains in-
terlocutor and outsider scores to train and test mod-
els, and we utilize Hazumi1902 and Hazumi1911
subsets from the Hazumi dataset1. This dataset is
an open-domain conversation in which “Wizard”
behaves like a dialogue system and “Participant”

1https://www.nii.ac.jp/dsc/idr/en/
rdata/Hazumi/
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Dataset Hazumi1902 Hazumi1911

# dialogues (participants) 30 30
Total count of exchanges 2477 2824
Utterance length (Wizard) 22.7 20.8
Utterance length (Participant) 22.2 25.1

Table 1: Statistics of the subsets of the Hazumi datasets
after preprocessing (§ 3.1). Utterance length refers to
the average number of characters in an utterance.

speaks as the user. These subsets only contain
an interlocutor’s (e.g., Participant’s) and five out-
siders’ scores for each utterance by the Wizard.
The participants and five outsiders rated the Wiz-
ard’s utterances on a scale of 1 (feeling negative)
to 7 (feeling positive) on the basis of user impres-
sions.2 The direction of the guideline is similar to
the engagement metric in Ghazarian et al. (2020)
and the annotation on the experiment in § 4.2 in
terms of the willingness of dialogue continuity.

In what follows, we preprocess the dataset so
that the exchanges, a pair of utterances by a Wiz-
ard and the Participant, consist of no empty utter-
ance. After these preprocessing steps, we obtained
5301 exchanges from 60 dialogues. The detailed
statistics are shown in Table 1. We split each con-
versation into 8:1:1 size chunks according to the
flow of the conversation (and recombined) to train,
validate, and test the prediction models.

3.2 Analyze the effective cues in interlocutor
score prediction

We train evaluators using various cues to iden-
tify the interlocutor scores and clarify the requi-
site for automatic interlocutor evaluation. In this
task, the models predict the interlocutor score to
an utterance by Wizard. We feed Wizard’s ut-
terance and the longest contexts possible to the
model, adding a special speaker token ([Wizard]
or [Participant]) to distinguish who speaks
utterances before the corresponding utterances.

Models We compared four evaluator models
based on BERT (Devlin et al., 2019) for abla-
tion. The differences between these models are
i) whether to use interlocutor scores or (the aver-
aged) outsider scores as the reference in training
and ii) whether to use a speaker token specific to
the target participant or the generic participant to-

2The annotation guidelines for user impressions define
keywords and keyphrases such as “wants to keep talking” and
“satisfied” as positive impressions, and “doesn’t want to keep
talking”, “frustrated” and “confused” as negative impressions.

Training score Target awareness Pearson’s r

Outsider 0.141
Outsider ✓ 0.142

Interlocutor 0.166
Interlocutor ✓ 0.496

Table 2: Results on interlocutor score prediction with
ablation of training score and target speaker awareness.

ken preceding each utterance. The distinguished
participant token is meant to adjust the evaluator
to individual interlocutors, inspired by the speaker
token introduced by Li et al. (2016) to model speak-
ers in response generation.

Settings We fine-tuned each model from pre-
trained Japanese BERT3 for 10 epochs with the
mean squared error loss. Other settings for the
model were as follows: learning rate was 3e−5 and
optimized with AdamW (Kingma and Ba, 2015),
and batch size was 64. We stored the model after
each epoch and adopted the model that achieved
the lowest loss for the validation data for testing.

Results Table 2 shows the correlations between
model predictions and interlocutor actual scores.
When a model is trained to predict the averaged
outsider score, the evaluator showed a very low cor-
relation of about 0.14. This confirms that outsider
scores are useless in predicting interlocutor scores.
Meanwhile, the model exhibits a much higher cor-
relation when trained to predict interlocutor scores
only with the awareness of target interlocutors; oth-
erwise, the model shows only a slight improvement
over the model learned by the averaged outsider
scores. These results suggest that automatic inter-
locutor evaluation requires us to not only take the
interlocutors’ view (here, scores) into account but
also to be aware of the target interlocutor.

4 Towards Automatic Response
Evaluation from Interlocutor’s Eye

From the result in § 3, we confirmed that accurate
interlocutor score prediction requires personalizing
the evaluator to the target interlocutor as well as re-
ferring to interlocutor scores. In practice, however,
collecting interlocutor scores and creating conver-
sations for the annotation are costly.

Therefore, focusing on evaluating responses in
terms of engagement, we propose an alternative

3https://huggingface.co/cl-tohoku/
bert-base-japanese-v2
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method to train an interlocutor-aware response eval-
uator via a dialogue continuity prediction task, as-
suming that utterances replied to by the interlocu-
tors are more engaging than utterances without a
response. The task is to predict whether there will
be a response to an utterance in dialogue.4

4.1 Interlocutor Evaluation via Personalized
Dialogue Continuity Prediction (DCP)

We train an automatic response evaluator via the
dialogue continuity prediction task (Figure 2).
The task settings are as follows. The task input
is a conversation containing N utterances U =
{u0, u1, ..., uN−1} made by two speakers si and
sj (uN−1 is made by sj). The model output is
assumed as the probability of whether the next re-
sponse uN is made by si, P (uN = exists | U, si).

How to consider the interlocutor in a model?
As we have observed in § 3.2, it is crucial to person-
alize a response evaluator to the target interlocutor
to estimate human judgments given by the inter-
locutors. Inspired by existing studies on personaliz-
ing open-domain dialogue systems (Li et al., 2016;
Zhang et al., 2018), we consider two methods for
the evaluator to take the interlocutor into account.
The first method leverages a speaker token specific
to the target interlocutor, which has been used in the
experiments in § 3.2, whereas the second method
refers to a user profile of the interlocutor. When
we train a speaker token specific to the target inter-
locutor, we follow the procedure described in § 3.2.
When using the profile, we input the profile text
that accompanies the evaluation datasets (§ 4.2) at
the beginning of the model inputs. We also con-
sider the combination of a speaker-specific token
and profile. In summary, we use three methods
to model the interlocutor: using a speaker-specific
token, using the profile, and using both methods
simultaneously.

4.2 Experimental Setup

To investigate the effectiveness of our interlocutor-
aware evaluators, we conduct experiments focusing
on two metrics: 1) accuracy of the dialogue con-
tinuation task and 2) correlation with manually-
annotated engagement scores.

4Although Ghazarian et al. (2022) has also utilized the
dialogue continuity prediction task for evaluating dialogue
systems. They requested the interlocutors to explicitly expose
to spoken dialogue systems whether or not to stop conversa-
tions, whereas we collected this label as an implicit signal
from no response in human conversation logs.

Data Type Train Dev. Test

Avg. turns in dialogue 3.4 3.4 3.3
Avg. char. size in turn 31.0 31.1 30.6
Avg. char. size in dialogue 106.5 106.8 101.2
Replied response size 1,779,895 100,899 1,088,970
No replied response size 1,244,530 70,135 832,377

Table 3: Statistics of the X dialogue datasets.

X (formerly Twitter) dialogue dataset We con-
ducted the experiments using conversation logs on
X. We can identify the author of a post, and han-
dle a variety of users. We developed a Japanese
dialogue dataset between two users using the API5.
During the construction, we excluded posts that
could be noisy, such as repetitive posts by bots,
and preprocessed posts referencing studies using
dialogues on Twitter (Li et al., 2016; Tsuta et al.,
2020). In addition, we used only the conversa-
tions where all responses were made within 30 min-
utes because response rates tend to decrease over
time (Gao et al., 2020). We expect these processes
to make conversations more engaging, coherent,
and less interrupted by others.

We randomly select 10,000 users who have had
at least 30 conversations between January 2017
and March 2018. We use up to 400 conversations
per user and their profile text to train the evaluator
models. The profiles are collected with a field of
the API (user.fields=description) and
the average character size is 75.0. We used con-
versations of these users between March and De-
cember 2018 as test data. Because the intermediate
reply is a positive sample and the last reply is a
negative sample in the DCP task, several samples
are collected from one conversation.

For the second experiment, we need conversa-
tions between a human (interlocutor) and a dia-
logue system, and the interlocutor’s engagement
score of willingness to reply to the system re-
sponses. Thus, we collected personal conversations
on X by two members of our research group (a
co-author and a graduate student) using the above
same process. The dialogue data was added to the
above dataset for (19, 6, and 10) and (165, 43, and
27) conversations as training, validation, and test
data, respectively. Table 3 shows the statistics of
the entire dataset.6

5https://developer.twitter.com/en/
docs/twitter-api

6The post IDs for datasets other than annotator con-
versations can be available on http://www.tkl.iis.
u-tokyo.ac.jp/%7Etsuta/aacl-srw.
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Dialog systems To obtain system responses for
human annotation, we employed seven dialogue
models with two types of base architectures, Trans-
former encoder-decoder and decoder-only Trans-
former (GPT-2). As the encoder-decoder model,
we used three publicly available dialogue systems
that were trained with different datasets (Sugiyama
et al., 2021).7 As GPT-2, We fine-tuned a pre-
trained GPT-28 (medium) with our dataset (§ 4.2).
We prepared four variations of fine-tuned GPT-2 to
obtain dialogue systems with diverse conversation
abilities. The two options are i) whether to re-
initialize the model’s parameters before fine-tuning
and ii) whether to personalize the system to the
interlocutor using a speaker token (Li et al., 2016).

Annotation with interlocutor judgments To ob-
tain manually annotated scores to responses for the
second experiment, we asked the two annotators
(same as the two interlocutors) to score seven re-
sponses generated by the above dialogue systems
and one ground-truth response in the test data on
a scale of 0 to 100, referring to Ji et al. (2022). 0
means that the annotator never responds to the last
utterance of the conversation, and 100 means the
opposite. We compensated the annotators at the
rate of 1,050 JPY per hour.

Evaluator and baselines We compare the fol-
lowing evaluation models. Because we also eval-
uate actual human responses, we use reference-
free evaluation models that are easily available in
our Japanese corpus as baseline models: BERT-
NSP (Devlin et al., 2019)9, BERT-RUBER (Ghaz-
arian et al., 2019), FED (Mehri and Eskenazi,
2020a)10 and Deep-AM-FM (Zhang et al., 2021).
We also adopt the simple baseline model that al-
ways outputs the majority class label (i.e., whether
or not to reply) based on the training data. We pre-
pared two types of majorities: all users’ majority
(Global majority) and each interlocutor’s majority
(Private majority).11

For the baseline models, we adopted a pre-
trained BERT3 for BERT-* and Deep-AM, and

7https://github.com/nttcslab/
japanese-dialog-transformers

8https://huggingface.co/rinna
9We employed the next sequence prediction task as an

automatic evaluation model as in other studies (Mehri and
Eskenazi, 2020b; Phy et al., 2020).

10We translated the follow-up utterances to evaluate system
responses in terms of engagement.

11Note that we use this model only in the first experiment
because the second experiment evaluates models by Pearson
correlation, but this model can output either 0 or 1.

Evaluator Accuracy Macro-F1

Global majority 0.564 0.361
Private majority 0.683 0.659

BERT-NSP 0.548 0.444
BERT-RUBER 0.541 0.488
Deep-AM 0.507 0.495
Deep-FM 0.543 0.533
Deep-AM-FM 0.541 0.531
FED 0.460 0.446

BERT-DCP 0.668 0.653
+ user token 0.751 0.744
+ profile 0.746 0.738
+ both 0.751 0.744

Table 4: Binary classification result of dialogue continu-
ity prediction task on X dialogue dataset.

GPT-28 (small) for FED and Deep-FM. We trained
models again for domain adaptation for FED and
Deep-AM-FM, and additionally fine-tuned them
for BERT-* using training data.12 For our evaluator
models, we trained BERT through the DCP task
without the target user awareness (BERT-DCP) and
with the personalization using user-specific token
(+ user token), profile text (+ profile), or both of
them (+ both). The hyperparameters of all mod-
els were as follows: learning rate as 3e− 5, batch
size as 64, and number of epochs as 5. We used
AdamW (Kingma and Ba, 2015) as the optimizer
and cross-entropy loss as the loss function. All
model parameters trained on our dataset, including
the annotator’s conversation for the second experi-
ment, are shared across all experiments.

4.3 Results

Table 4 lists the results of binary classification on
the dialogue continuity prediction task in terms of
accuracy and macro-F1 to correct label bias. To
compare the baseline model which does not out-
put probabilities (Deep-AM-FM, FED), the model
output is binarized using a threshold based on the
whole user response ratio in the validation data. Un-
surprisingly, BERT-DCP fine-tuned through DCP
task performed better than the baselines. The eval-
uator can work with the DCP task by considering
the interlocutor and get better results than Private
majority. We also observed that using a unique
speaker token for each interlocutor was a more
effective way of taking interlocutors into account.

Table 5 lists the results of Pearson’s r correla-

12We created their negative samples with the same amount
of positive samples in the training data by randomly combining
a dialogue context utterances and a reply.
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Evaluator Annotator 1 Annotator 2

Human System Human System

BERT-NSP 0.477 0.416 −0.028 0.337
BERT-RUBER 0.285 0.243 −0.134 0.210
Deep-AM 0.564 0.293 0.015 0.242
Deep-FM 0.499 0.031 −0.011 −0.070
Deep-AM-FM 0.528 0.074 −0.010 −0.055
FED 0.210 0.051 0.040 −0.070

BERT-DCP 0.646 0.401 0.578 0.156
+ user token 0.720 0.364 0.582 0.072
+ profile 0.754 0.369 0.543 0.077
+ both 0.727 0.367 0.527 0.078

Table 5: Correlation with human judgment for responses
by humans (Human) and dialogue systems (System).

tion between each evaluator’s outputs (probabili-
ties) and interlocutor scores. Our evaluators, BERT-
DCP, have higher correlations with fluent human re-
sponses than baseline evaluators, and the improve-
ment of performance by considering personality
can be confirmed. This result confirms the useful-
ness of the DCP task for predicting interlocutor
evaluations. In contrast, the BERT-NSP has the
highest correlation in the system response, and all
BERT-NSPs are worse than the performance in the
human response. This may be because the DCP
task is trained based on real conversations and is
therefore vulnerable to non-fluent and inappropri-
ate responses by the system. A similar tendency of
lower correlation with human judgments for system
responses than those for human responses has been
reported for the other evaluation models on engate-
ment (Ghazarian et al., 2020; Gao et al., 2020).

Because our interlocutor-aware evaluators corre-
late well with interlocutors’ judgments of human
responses, our method will be more useful as dia-
logue systems converse more naturally like humans.
However, we still need to improve the evaluator so
that it is capable of evaluating dialogue systems in
the future.

4.4 Discussion

The performance of our interlocutor-aware evalua-
tor will be affected by the size of the conversation
logs given by the target interlocutor. For example,
the performance could be poor for users who have
a few conversations in the training data. To investi-
gate the relationship between the training sample
size for the target interlocutor and the performance
of our models, we divide the test dataset into three
user groups so that the training sample size for each
group is as equal as possible. As a result, the aver-
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Figure 3: Result of dialogue continuity prediction task
per user group split according to training sample size.

age sample size for each group was approximately
60,000, and the smallest group had an average of
51.1 samples. Table 3 shows the result on each user
group in the test dataset. We confirmed that, with
the exception of a peak around 400 samples, the ac-
curacy changed only slightly below 1200 samples,
improved above 1200 samples, and overall, the
personalized models outperformed the BERT-DCP.

5 Conclusions

This study first explored the effect of interlocutor
awareness on predicting interlocutor evaluations
and then examined an automatic response evalua-
tion method grounded in the perspective of the in-
terlocutor. In the first experiment using the Hazumi
dataset, we confirmed interlocutor score prediction
requires personalization for interlocutor awareness
as well as interlocutor scores. In the second experi-
ment using conversations on X (formerly Twitter),
we confirmed that dialogue continuity prediction
is effective in training our interlocutor-aware auto-
matic evaluator and the evaluator correlates with
the actual interlocutor evaluations on human re-
sponses, while the improvement of the evaluation
for the system responses is future work.

We plan to leverage recent response generation
methods in long-term conversations (Xu et al.,
2022b,c; Bae et al., 2022; Takasaki et al., 2023)
to personalize our evaluator.
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Limitations

Although this study illuminates the demand for
evaluation from the perspective of the interlocu-
tor, we only confirmed evaluation in terms of en-
gagement. As existing studies on evaluation for
open-domain dialogue systems are conducted in a
variety of metrics such as understandability and in-
formativeness, etc, (Finch et al., 2023), interlocutor-
aware evaluation in the other evaluation metrics
needs to be investigated.

To realize the study for a variety of metrics, a
dataset with sufficient size of conversations and
annotations is needed. In this study, we conducted
experiments with two annotators to compare the
automatic evaluators, but it is desirable to be an-
notated by a variety of people. Therefore, it is
necessary to overcome the difficulties of the cost of
constructing a dataset that includes conversations
with multiple dialogue systems and annotations by
the speakers, as well as the privacy issues related
to dataset publication to reproduce experiments.
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Abstract

Simultaneous speech translation (SST) aims
to provide real-time translation of spoken lan-
guage, even before the speaker finishes their
sentence. Traditionally, SST has been ad-
dressed primarily by cascaded systems that
decompose the task into subtasks, including
speech recognition, segmentation, and machine
translation. However, the advent of deep learn-
ing has sparked significant interest in end-to-
end (E2E) systems. Nevertheless, a major limi-
tation of most approaches to E2E SST reported
in the current literature is that they assume
that the source speech is pre-segmented into
sentences, which is a significant obstacle for
practical, real-world applications. This the-
sis proposal addresses end-to-end simultaneous
speech translation, particularly in the long-form
setting, i.e., without pre-segmentation. We
present a survey of the latest advancements in
E2E SST, assess the primary obstacles in SST
and its relevance to long-form scenarios, and
suggest approaches to tackle these challenges.

1 Introduction

In today’s highly globalized world, communication
among individuals speaking different languages is
gaining importance. International conferences and
multinational organizations like the European Par-
liament often rely on human interpreters. However,
in many scenarios, employing human interpreters
can be impractical and costly. In such cases, simul-
taneous speech translation1 (SST) offers a viable
solution by enabling real-time translation before
the speaker completes their sentence.

∗The literature on simultaneous speech translation often
uses the word “streaming” as an equivalent of “simultane-
ous” to refer to the translation of an unfinished utterance. In
other literature, however, the term “streaming” refers to in-
put spanning several sentences. To avoid confusion, we use
“simultaneous” to refer to the translation of an unfinished ut-
terance and “long-form” to refer to input spanning several
sentences.

1We consider only the speech-to-text variant in this work.

Traditionally, both offline speech translation
(ST) and simultaneous speech translation (SST)
have relied predominantly on cascaded systems that
decompose the task into multiple subtasks, includ-
ing speech recognition, speech segmentation, and
machine translation (Osterholtz et al., 1992; Fügen
et al., 2007; Bojar et al., 2021). However, recent
advancements in deep learning and the availability
of abundant data (Tan and Lim, 2018; Sperber and
Paulik, 2020) have led to a significant paradigm
shift towards end-to-end (E2E) models. While the
cascaded approach continues to dominate offline
ST, the opposite is true for SST (Anastasopoulos
et al., 2022; Agarwal et al., 2023).

Despite the recent popularity of end-to-end SST,
the vast majority of research focuses on the “short-
form” setting, which assumes that the speech input
is already pre-segmented into sentences. Critically,
this assumption poses an obstacle to deployment
in the wild. Therefore, we aim to achieve a “true”
long-form simultaneous speech translation in our
thesis. We break down our efforts into three steps:

Quality-latency tradeoff in SST The first step
of our research concentrates on enhancing the
quality-latency tradeoff, mainly in the traditional
“short-form” regime. We will evaluate different
approaches and architectures.

Towards the long-form SST In the next step, we
will explore the feasibility of long-form simulta-
neous speech translation by adopting segmented
inference.

True long-form SST The final goal of our work
is to explore the potential of end-to-end modeling
for true long-form SST. We will focus on identify-
ing an appropriate model architecture and effective
training procedures to achieve seamless and reli-
able long-form simultaneous speech translation.

The next section introduces some important as-
pects of simultaneous speech translation.

64



2 Simultaneous Speech Translation

The ultimate goal of SST is to enable real-time
communication between people speaking different
languages. To achieve this goal, SST systems must
meet two important criteria. First, they must be
computationally efficient to ensure timely transla-
tion during ongoing speech. Second, SST systems
must be capable of handling unfinished sentences.
Working with unfinished sentences allows for more
timely translations, particularly when waiting for
sentences to be completed is impractical, such as
matching slides or presenters’ gestures. However,
translating unfinished sentences increases the risk
of translation errors since translation usually re-
quires re-ordering that benefits from a more com-
plete sentence context. Thus, there exists a quality-
latency tradeoff. This means that given a certain
latency constraint, we want the model to produce as
good translations as possible. Ideally, we want the
model to “predict” the future context without the
risk of an incorrect translation. The quality-latency
tradeoff is one of the main topics of our research.

2.1 Re-Translation vs. Incremental SST

SST can be classified as either re-translation or
incremental. Re-translation SST (Niehues et al.,
2016, 2018) can revise the hypothesis or re-rank
the set of hypotheses as more speech input is read.
Revising the translation allows the re-translation
SST to have comparable final translation quality
with the offline speech translation (Arivazhagan
et al., 2020). This design approach arguably in-
troduces challenges for the user in processing the
translation and makes it impossible to use in real-
time speech-to-speech translation. Additionally, it
also complicates the latency evaluation.

In fact, several SST latency metrics (Ma et al.,
2020) were originally developed specifically for in-
cremental translation scenarios.2 Incremental SST
(Cho and Esipova, 2016; Dalvi et al., 2018) dif-
fers from the re-translation system in that it prunes
all hypotheses to a common prefix, which is then
shown to the user. For the user, the translation
changes only by incrementally getting longer; none
of the previously displayed outputs are ever modi-
fied. In our work, we focus on incremental SST.

2IWSLT shared tasks (Ansari et al., 2020; Anastasopoulos
et al., 2021, 2022) also follow this evaluation standard.

2.2 Cascaded vs. End-to-End

Traditionally, offline speech translation and SST
were achieved as a cascade of multiple systems:
automatic speech recognition (ASR), inverse tran-
script normalization, which includes punctuation
prediction and true casing, and machine translation
(MT, Osterholtz et al., 1992; Fügen et al., 2007;
Bojar et al., 2021). The advantage of the cascade
approach is that we can optimize models for each
subtask independently. Also, ASR and MT tasks
typically have access to larger and more diverse
corpora than direct speech translation.

However, using a cascade system introduces sev-
eral challenges (Sperber and Paulik, 2020). The
most important among them is error propagation
(Ruiz and Federico, 2014). Further, MT mod-
els might suffer from mismatched domains when
trained on written language. Furthermore, as the
source is transformed into a textual form, it loses
crucial information about prosody, i.e., the rhythm,
intonation, and emphasis in speech (Bentivogli
et al., 2021). Finally, many languages, especially
endangered ones, have no written form, which
makes the cascade approach impractical or impos-
sible for such languages (Harrison, 2007; Duong
et al., 2016).

As of the latest findings, the current state-of-
the-art for offline speech translation continues to
be based on a cascaded approach (Anastasopoulos
et al., 2022; Agarwal et al., 2023). In simultaneous
speech translation, however, both approaches yield
competitive performance. The advantage of the
end-to-end models in SST may be that they avoid
the extra delay caused by ASR-MT collaboration
in the cascade (Wang et al., 2022).

In our work, we focus on end-to-end models.

3 Long-form Simultaneous Speech
Translation

Most of the contemporary research on SST assumes
speech pre-segmented into short utterances with
segmentation following the sentence boundaries.
However, in any real application, there is no such
segmentation available. This section places long-
form SST within the broader context of long-form
ASR, MT, and offline ST. Subsequently, we explore
the current literature on long-form SST.

3.1 Long-Form ASR

In terms of input and output modalities, long-form
ASR and ST face similar issues. There are two
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types of strategies for long-form processing: (1)
the segmented approach, which divides the input
into smaller chunks, and (2) the true long-form
approach, which handles the entire long-form input
as a single unit.

Most of the literature focuses on the seg-
mented approach. A typical solution involves pre-
segmenting the audio using voice activity detection
(VAD). However, VAD segmentation may not be
optimal for real-world speech since it might fail
to handle hesitations or pauses in sentences that
must be treated as undivided units. More sophis-
ticated approaches leverage latent alignments ob-
tained from CTC (Graves et al., 2006) and RNN-T
(Graves, 2012) for better segmentation (Yoshimura
et al., 2020; Huang et al., 2022). Alternatively,
segmentation into fixed segments is also popular
(Chiu et al., 2019, 2021). To reduce low-quality
transcripts close to the segment boundaries, they
typically perform overlapped inference and use la-
tent alignments to merge the transcripts correctly.
The chunking approach is also adopted by the atten-
tional model Whisper in the offline (Radford et al.,
2023) and simultaneous regime (Macháček et al.,
2023).

Another line of work focused on long-form mod-
eling directly. For example, Chiu et al. (2019) con-
ducted a comprehensive study comparing differ-
ent architectures, including RNN-T and attention-
based models. The findings indicate that only RNN-
T and CTC architectures can generalize to unseen
lengths. To further improve the true long-form
ASR, Narayanan et al. (2019) suggest simulation
of long-form training by LSTM state passing.

While the previously mentioned research was
predominantly based on RNNs, more recent work
has transitioned to utilizing Transformer models.
Zhang et al. (2023) compared a chunk-wise atten-
tion encoder, which involves an encoder with a
limited attention span, in combination with the
attention-based decoder (AD) and CTC. We note
that while the encoder has a limited attention span,
the attention-based decoder sees the entire encoder
representation. The model employing AD could
not function without chunking, whereas the CTC
model processed the entire speech at once and still
outperformed the AD model.

3.2 Long-Form MT

The primary objective of long-form MT is to en-
hance textual coherence, as conventional MT sys-

tems assume sentence independence. Early work
explored a concatenation of previous (Tiedemann
and Scherrer, 2017; Donato et al., 2021) and fu-
ture sentences (Agrawal et al., 2018). These works
showed that MT models benefit from the extra con-
text and better handle the inter-sentential discourse
phenomena. However, the benefits diminish if the
context grows beyond a few sentences (Agrawal
et al., 2018; Kim et al., 2019; Fernandes et al.,
2021). This can be attributed to the limitations of
attention mechanisms, where an extensive volume
of irrelevant information can lead to confusion.

Other body of work tries to model very long
sequences directly. Dai et al. (2019) introduced
a recurrence mechanism and improved positional
encoding scheme in the Transformer. Later work
proposed an explicit compressed memory realized
by a few dense vectors (Feng et al., 2022).

3.3 Long-Form Offline ST

Unlike written input text in long-form MT, speech
input in the ST task lacks explicit information about
segmentation. Therefore, the research in the area of
long-form offline speech translation concentrates
on two separate issues: (1) improving segmenta-
tion into sentences, and (2) enhancing robustness
through the use of larger context.

In the traditional cascaded approach with sep-
arate speech recognition and machine translation
models, the work focused on segmentation strate-
gies for the ASR transcripts.3 The methods are
usually based on re-introducing punctuation to the
transcript (Lu and Ng, 2010; Rangarajan Sridhar
et al., 2013; Cho et al., 2015, 2017). However,
these approaches suffer from ASR error propaga-
tion and disregard the source audio’s acoustic in-
formation. This was addressed by Iranzo-Sánchez
et al. (2020a), however, the approach still requires
an intermediate ASR transcript that is unavailable
in E2E models.

An alternative approach involves source-speech-
based segmentation. The early work focused on
VAD segmentation. This is usually sub-optimal as
speakers place pauses inside sentences, not neces-
sarily between them (e.g., hesitations before words
with high information content, Goldman-Eisler,
1958). To this end, researchers tried considering
not only the presence of speech but also its length
(Potapczyk and Przybysz, 2020; Inaguma et al.,

3ASR transcripts are traditionally normalized, i.e., they
consist of lowercase words without punctuation.
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2021; Gaido et al., 2021). Later studies tried to
avoid VAD and focused on more linguistically-
motivated approaches, e.g., ASR CTC to predict
voiced regions Gállego et al. (2021) or directly
modeling the sentence segmentation (Tsiamas et al.,
2022b; Fukuda et al., 2022).

To address the problem of inadequate segmenta-
tion, Gaido et al. (2020) showed that context-aware
ST is less prone to segmentation errors. In an exten-
sive study of context-aware ST, Zhang et al. (2021)
observed that context improves quality, but this
holds only for a limited number of utterances.

3.4 Long-Form Simultaneous ST
Research focusing on direct long-form simultane-
ous speech translation remains relatively scarce.
The closest works are in long-form simultane-
ous MT. Schneider and Waibel (2020) proposed
a streaming MT model capable of translating un-
segmented text input. This model could be the-
oretically adapted for speech input. However, it
was later shown that this model exhibits huge
latency (Iranzo Sanchez et al., 2022). Another
work (Iranzo Sanchez et al., 2022) explored the
extended context and confirmed the findings from
long-form MT and offline ST, demonstrating that
using the previous context significantly enhances
performance. They also confirmed that a too-long
context leads to decreased translation quality.

Finally, the only direct SST model that claims
to work on a possibly unbounded input is Ma et al.
(2021). The model utilizes a Transformer encoder
with a restriction on self-attention, allowing it to at-
tend solely to a memory bank and a small segment.
Unfortunately, based on the reported experiments,
whether the model was specifically evaluated in the
long-form setting remains unclear.

3.5 Evaluation
Evaluation of SST is a complex problem as we
have to consider not only the translation quality
but also the latency. Additionally, in the long-form
regime, segmentation becomes another obstacle.

The most commonly used metric for translation
quality in speech translation is BLEU (Papineni
et al., 2002; Post, 2018). Other metrics such as
chrF++ (Popović, 2017) and a neural-based metric
COMET (Rei et al., 2020) can be applied, too.

The other important property of an SST sys-
tem is latency. There are two main types of laten-
cies: computation-unaware (CU) and computation-
aware (CA) latency. The computation-unaware

latency measures the delay in emitting a translation
token relative to the source, regardless of the actual
computation time. Hence, CU latency allows for a
fair comparison regardless of the hardware infras-
tructure. However, CU latency cannot penalize the
evaluated system for extensive computation; hence,
CA latency can offer a more realistic assessment.

Measuring latency relative to the source or ref-
erence in SST is quite difficult because of the re-
ordering present in translation. Historically, latency
metrics were first developed for simultaneous ma-
chine translation (i.e., the source is text rather than
speech). The most common are average lagging
(AL; Ma et al., 2019) and differentiable average
lagging (DAL; Cherry and Foster, 2019). Broadly
speaking, they measure “how much of the source
was read by the system to translate a word”. The
latency unit is typically a word. The speech com-
munity quickly adopted these metrics. Unfortu-
nately, these metrics assume a uniform distribution
of words and uniform length of these words in the
speech source. Alternatively, Ansari et al. (2021)
proposed to use a statistical word alignment of the
candidate translation with the corresponding source
transcript. This theoretically allows for more pre-
cise latency evaluation, but it is unclear how the
alignment errors impact the reliability.

In the unsegmented long-form setting, additional
issues arise. In a typical “short-form” segmented
setup, the SST model does inference on a pre-
segmented input. However, the candidate and ref-
erence segmentation into sentences might differ
in the long-form unsegmented regime. Tradition-
ally, this issue was addressed by re-segmenting
the hypothesis based on the reference (Matusov
et al., 2005). After the re-segmentation, a standard
sentence-level evaluation of translation quality and
latency is done. It should be noted that the com-
monly used latency metrics (AL, DAL) cannot be
used in the long-form regime (Iranzo-Sánchez et al.,
2021) without the re-segmentation. Yet, recent
work observed that the re-segmentation introduces
errors (Amrhein and Haddow, 2022). This poses a
risk of incorrect translation and quality assessment
and remains an open research question.

4 Thesis Goals

The goal of our thesis is to achieve a “true” long-
form simultaneous speech translation. This section
outlines the steps we will take to accomplish this
goal.
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4.1 Data and Evaluation

In our future research, we will mainly use the
setup similar to the IWSLT shared tasks (Ansari
et al., 2020; Anastasopoulos et al., 2021, 2022), i.e.,
mostly single speaker data. Identical to the IWSLT,
we will treat the TED data as an in-domain setting.
We will consider domains such as parliamentary
speeches (e.g., Europarl-ST Iranzo-Sánchez et al.,
2020b) for the out-of-domain setting. As for the
languages, we will include a diverse set of lan-
guage pairs. A good inspiration might be again the
IWSLT, i.e., English-to-{German, Japanese, Chi-
nese}. Challenging will be the long-form setting,
as to the best of our knowledge, none of the avail-
able data is strictly long-form. Our preliminary
review found that the original TED talks can be re-
constructed from the MuST-C (Cattoni et al., 2021)
development and test set available for English-to-
{German, Japanese, Chinese} language pairs.

As highlighted in the literature review in Sec-
tion 3.5, evaluating the long-form SST remains an
open problem. The quality and latency evaluation
metrics currently used are designed for sentence-
level evaluation. We must re-segment the long hy-
potheses into sentences based on their word align-
ment with provided references to use these metrics
in the long-form regime. Unfortunately, the re-
segmentation introduces errors, which poses a risk
to the evaluation reliability. To tackle this, we will
investigate alternative evaluation strategies. One
potential approach for reducing the alignment error
could be to move the alignment to the sentence
level rather than the word level and allow an m-
to-n mapping between the reference and proposed
sentences, similar to the Gale–Church alignment
algorithm (Gale et al., 1994), with a reasonably
small m and n (e.g., 0 ≤ m,n ≤ 2). To verify the
effectiveness of this method, we need to compare
its correlation with human evaluations.

4.2 Quality-latency tradeoff in SST

The first step of our research concentrates on en-
hancing the quality-latency tradeoff, mainly in the
traditional “short-form” simultaneous speech trans-
lation. We hope the insights and improvements
from the short-form regime will translate into the
long-form regime.

In the research done so far, we already suc-
cessfully reviewed the possibility of “onlinizing”
state-of-the-art offline speech translation models
in Polák et al. (2022). Our observations indicated

that the attention-based encoder-decoder (AED)
models tend to over-generate. This not only affects
the resulting quality but also negatively impacts
the AL latency evaluation reliability. Therefore,
we proposed an improved version of the AL met-
ric, which was later independently proposed un-
der name length-adaptive average lagging (LAAL;
Papi et al., 2022). To remedy the over-generation
problem, we proposed an improved version of the
beam search algorithm in Polák et al. (2023b).
While this led to significant improvements in the
quality-latency tradeoff, the decoding still relied
on label-synchronous decoding. In Polák et al.
(2023a), we proposed a novel SST policy dubbed
“CTC policy” that uses the output of an auxiliary
CTC layer to guide the decoding. The proposed
CTC policy led to even greater improvements in
quality and reduced the real-time factor to 50 %.

Thus far, our research has focused primarily on
the AED architecture. Nonetheless, recent findings
(Anastasopoulos et al., 2022; Agarwal et al., 2023)
suggest that other approaches, such as transducers
(Graves, 2012), yield competitive results. Never-
theless, it remains unclear which approach is the
most advantageous for SST. Our goal will be to
compare these architectures for SST. We will put
a particular emphasis on architectures with latent
alignments (e.g., transducers). Generally, the la-
tent alignment models make a strong monotonic
assumption on the mapping between the source
and the target, which might be problematic for the
translation, typically involving word reordering.
Therefore, we will assess the alignment quality and
potential applications (such as segmentation).

4.3 Towards the Long-Form SST via
On-the-Fly Segmentation

In the second stage, we will concentrate on the long-
form SST by utilizing on-the-fly segmentation and
short-form models from the previous stage.

Drawing inspiration from offline long-form ST,
which primarily emphasizes segmentation, we
consider direct segmentation modeling the most
promising approach (Tsiamas et al., 2022a; Fukuda
et al., 2022). The limitation of these approaches
is that they do not allow out-of-the-box simulta-
neous inference. However, we believe their adap-
tation to the simultaneous regime should be rela-
tively straightforward (e.g., using a unidirectional
encoder) and a custom decoding strategy. The main
challenge here will be integrating this segmenta-

68



tion with existing models, especially considering
the quality-latency tradeoff.

Our hopes go even further: Can we train a model
to translate and predict the segmentation at the
same time? The translation already contains punc-
tuation marks (full stop, exclamation, and question
marks), so if we knew the alignment between the
translation and the source speech, we could use
this information to segment the utterances directly.
Therefore, we will experiment with various align-
ment approaches and asses their applicability to the
segmentation. The results of our initial investiga-
tion on on-the-fly separation with CTC outputs are
available in Polák and Bojar (2023).

However, we see another valuable use of direct
speech-to-translation alignments — dataset cre-
ation. Today, ST datasets are created using the cas-
caded approach (Iranzo-Sánchez et al., 2020b; Cat-
toni et al., 2021; Salesky et al., 2021). The source
transcript is first forced-aligned to the speech, then
the transcript is word-aligned to the translations,
and finally, these two alignments are used to seg-
ment the source speech into sentences based on the
punctuation in the translation. In fact, this approach
has a critical drawback: it virtually eliminates all
data without a source transcript, preventing the re-
search community from utilizing potentially valu-
able data sources. It is also worth noting that some
languages do not have a writing system, which
makes the direct speech-to-translation alignment
even more attractive. Therefore, if the alignments
show promising results, we will explore the feasi-
bility of E2E speech-to-translation dataset creation.

An additional question is how to accommo-
date long context in the simultaneous regime. As
pointed out in Sections 3.2 to 3.4, the performance
usually drops with a context longer than a few sen-
tences. Some solutions have been suggested (Kim
et al., 2019; Feng et al., 2022), but it remains un-
clear how to adapt these approaches for SST with
the specifics of SST in mind (e.g., computational
constraints, speech input).

4.4 True Long-Form SST

The ultimate goal of our work is to achieve true
long-form simultaneous speech translation. In
other words, we aim to develop an architecture
capable of processing a potentially infinite stream
of speech input without any segmentation or spe-
cial inference algorithm, translating the speech di-
rectly into the target language in real time. Ad-

mittedly, this is a very ambitious goal. However,
there is plenty of evidence that it is feasible. For
example, in long-form ASR, related work has al-
ready observed that the RNN-T and CTC archi-
tectures are capable of long-form regime (Chiu
et al., 2019; Narayanan et al., 2019; Lu et al., 2021;
Zhang et al., 2023; Rekesh et al., 2023). Arguably,
speech recognition is simpler than speech transla-
tion because it monotonically transcribes speech
without reordering. However, the literature also
shows that an architecture like RNN-T can be used
in the “short-form” offline and simultaneous ST
(Yan et al., 2023).

Therefore, based on the previous work in speech
recognition and translation, we will propose a novel
architecture that will allow simultaneous speech
translation of a possibly infinite stream of speech.
We will take inspiration from the existing archi-
tectures but revise them for the specific needs of
simultaneous ST. This will require a particular fo-
cus on speech-to-translation alignment so that the
source speech and target translation do not get out
of sync. This architecture will also contain a “for-
getting” mechanism that will allow the storage of
essential bits of context while preventing mem-
ory issues. Finally, we will address the train-test
mismatch because current hardware and training
methods do not permit models to fit long inputs.

5 Conclusion

In conclusion, this thesis proposal presents an
overview of the challenges involved in simulta-
neous speech translation (SST). The literature re-
view highlighted the limited research on long-form
speech translation. Our research sets out three
main goals with an emphasis on long-form speech
translation. These include improving the general
quality-latency tradeoff in SST, exploring long-
form SST through segmented inference, and ul-
timately achieving true long-form SST modeling.
We placed these goals in the context of related work
and outlined a clear strategy for achieving them.
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Abstract

With the advancement of dialogue systems pro-
pelled by neural-based methods, researchers
have been working on developing dialogue sys-
tems that can collaborate with humans to com-
plete tasks in the real world and virtual environ-
ments. In such collaborative work, the system
needs to either perform an action or make an
utterance appropriate for the context. However,
previous literature has treated action and utter-
ance generation separately. In this study, with
the aim of enabling the system to autonomously
determine whether to act or utter, we create a
model that can handle both action and utter-
ance generation in a unified model. We con-
ducted experiments on a dataset related to col-
laborative work in Minecraft and show that the
proposed model can autonomously determine
whether to act or utter and generate better ac-
tions and utterances than the baselines.

1 Introduction

With the advancement of dialogue systems by
neural-based methods (Bang et al., 2023; Shus-
ter et al., 2022), towards more advanced dialogue
systems, researchers have been working on devel-
oping dialogue systems that can collaborate with
humans to complete tasks (Meena et al., 2013; He
et al., 2017). Many studies have focused on col-
laborative work in virtual environments, such as
Minecraft (Narayan-Chen et al., 2019; Ogawa et al.,
2020; Bara et al., 2021), and competitions such as
the Interactive Grounded Language Understand-
ing (IGLU) challenge1 have been organized. In
such collaborative work, systems need to handle
not only dialogue but also actions in their environ-
ment. However, studies in previous literature treat
action and utterance generation as separate tasks
(Narayan-Chen et al., 2019; Jayannavar et al., 2020;
Mohanty et al., 2023), making systems incapable

1https://www.iglu-contest.net/

of executing both, which is required in realistic
settings.

In this study, with the aim of enabling a system
to autonomously determine whether to act or utter
and execute on the basis of context, we create a
unified model, the Action-Utterance Model, that
can handle both action and utterance generation.
Specifically, the model is trained simultaneously
on three tasks: action type classification, action
generation, and utterance generation.

We conducted experiments using the Collab-
orative Garden Task Corpus (Ichikawa and Hi-
gashinaka, 2022), which is a dataset related to
collaborative work in Minecraft, and the results
showed that the proposed model can autonomously
determine whether to act or utter and generate bet-
ter actions and utterances than the baselines. Fur-
thermore, we analyzed the inference results and
revealed the difficulty of generating actions unre-
lated to last actions.

2 Related Work

Studies have been emerging on performing com-
plex collaborative work involving both actions and
utterances in virtual worlds such as Minecraft (Kim
et al., 2019; Ichikawa and Higashinaka, 2022) with
some implemented systems.

For example, Gray et al. (2019) constructed a
system that creates simple structures on the basis of
user instructions through text chat. Narayan-Chen
et al. (2019) and Jayannavar et al. (2020) mod-
elled an instructor and builder for the Collaborative
Building Task (Narayan-Chen et al., 2019), which
involves two interlocutors working together to cre-
ate a target structure. Recent research has focused
on the IGLU task, which is based on the Collabora-
tive Building Task (Kiseleva et al., 2022; Mohanty
et al., 2023; Shi et al., 2023; Mehta et al., 2023).
However, while there have been efforts to classify
whether to act or utter, these tasks are treated as
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Figure 1: Dialogue in Collaborative Garden Task Corpus. ID represents utterance number, and S represents
interlocutor. Utterances were originally in Japanese and have been translated into English by authors. Shaded rows
indicate actions. Figure on right shows situation immediately after last action.

independent. Since actions and utterances are inter-
related at the intent level and should not be treated
separately, in this study, we focus on a model that
can handle both action and utterance generation.

In fields outside of collaborative work, there
are studies that aim to develop systems that can
handle both actions and utterances. For example,
Chen et al. (2021) constructed a task-oriented dia-
logue dataset that incorporates both actions, such
as search and purchase, and utterances. Reed et al.
(2022) proposed a model called Gato, which uti-
lizes a single Transformer architecture to perform
various tasks, including text generation tasks, such
as utterance generation and caption generation, as
well as action generation tasks. However, these
studies do not use a model that can handle both
actions and utterances. In this paper, we investigate
the effectiveness of a unified model in collaborative
work tasks.

3 Dataset and Task

3.1 Collaborative Garden Task Corpus

In this study, we adopt the Collaborative Gar-
den Task Corpus constructed by Ichikawa and Hi-
gashinaka (2022) as a collaborative work dataset.
Figure 1 shows an example of a dialogue included
in the corpus. In the Collaborative Garden Task,
two interlocutors interact via text chat while ma-
nipulating blocks in order to cooperatively create
a beautiful and unique garden in Minecraft (here,
beauty and uniqueness are based on the subjective
evaluation of the interlocutors). In the dataset, the
interlocutors can freely use 17 different types of
blocks within a 10 × 10 × 4 area; they need to
decide on the design of the garden through dia-
logue with their partner. Since the activity com-
bines actions and utterances, we determined it to

be a suitable dataset for evaluation. The Collabora-
tive Garden Task Corpus contains 1,092 dialogues,
each of which records in-game information such as
utterances, block manipulations, and avatar move-
ments. The language used is Japanese, with a total
of 31,416 utterances, an average word count of
13.9 per utterance, and a total of 657,693 block
manipulations.

3.2 Next Action-Utterance Generation Task

In this study, we address the Next Action-Utterance
Generation Task, which aims to predict the next
action or utterance to be performed. In this task,
the goal is to predict the interlocutor’s next actions
(which may include making utterances), denoted
as at, given the dialogue and state history Ht, the
world state Wt, and the avatar’s position (xt, yt, zt)
and orientation (yawt, pitcht) at turn t.

An action at is composed of one of four
action types [utterance (UTT), block manip-
ulation (BLOCK), SKIP, FINISH], along
with its subsidiary information. In the
case of UTT, we additionally predict utter-
ance ut. In the case of BLOCK, we addi-
tionally predict the set of block operations
bt = {(block_action, [block_name], x, y, z), ...};
block_action represents whether to place or break
and (x, y, z) represents the block coordinates. In
the case of placement, the block type block_name
is also to be output. SKIP represents the interlocu-
tors’ non-operation at turn t. SKIP is introduced to
model complex mixed-initiative interactions into a
simple turn-by-turn dialogue. FINISH represents
the end of the dialogue; the dialogue ends when
one of the interlocutors outputs FINISH.
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Figure 2: Overall architecture of proposed model. Model takes as input dialogue and state history Ht =
{(∆Wi0 ,Wi0 , ui0), ..., (∆Wi,Wi, ui), ...}, actions (which may include making utterances) performed in last N
turns, change in world state between previous utterance and current time, ∆Wt, current world state Wt, and avatar’s
positions and orientations. Model outputs next action type along with its content.

4 Model

4.1 Model Architecture

Figure 2 shows the overall architecture of the pro-
posed model, the Action-Utterance Model. We use
a pretrained Transformer decoder model as the un-
derlying Large Language Model (LLM). Addition-
ally, to embed non-verbal information, such as the
world state and the avatar’s position and orientation,
into the same dimension as text, various encoders
are prepared, including the Flattened Voxel Block
Encoder, GPS multi-layer perceptron (MLP), and
Compass MLP. These encoders were inspired by
the implementation in MineDojo (Fan et al., 2022).

The Flattened Voxel Block Encoder consists of
an embedding layer and a 3-layer MLP. It con-
verts voxel data representing the world state into
a vector equivalent to one token. The GPS MLP
and Compass MLP consist of 2-layer MLPs, each
transforming the avatar’s positional and orientation
information into a vector equivalent to one token.
Each MLP is composed of linear and ReLU lay-
ers. Non-verbal information such as the world state
embedded in the same vector space as the text is
concatenated with the text embedding and input
into the decoder. The LM Head receives the infor-
mation processed by the decoder and outputs the
next action.

4.2 Model Input

The model receives input at turn t, which includes
the dialogue and state history, Ht, actions taken in
the most recent N turns (we use N = 10 in this

paper), the change in the world state between the
previous utterance and the current time, ∆Wt, the
current world state Wt, and the avatar’s position
(xt, yt, zt) and orientation (yawt, pitcht).

The dialogue and state history consist of a set of
tuples, ∆Wi, Wi, and the utterance ui, formulated
as follows.

Ht = {(∆Wi0 ,Wi0 , ui0), ..., (∆Wi,Wi, ui), ...} (1)

∆Wi represents changes in the world state between
the previous utterance and the current utterance,
while Wi represents the world state at the time of
the utterance. Note that due to the increase in pro-
cessing time when considering all actions up to the
current time, we use the world state and its differ-
ences instead of all actions. ∆Wi is further divided
into those representing interlocutor A’s changes
∆WA

i and interlocutor B’s changes ∆WB
i . The

world state W and changes in the world state ∆W
are represented in 10 × 10 × 4 voxels. W con-
tains the block IDs at each coordinate, while ∆W
stores the block IDs after the changes (if there is
no change, it is 0).

For the actions taken in the most recent N turns,
we include action types (UTT, BLOCK, SKIP, and
FINISH) and, in the case of UTT or BLOCK, we
also include the content of these actions. Each
action type corresponds to a single token. In the
case of UTT, we include the utterance text uk. In
the case of BLOCK, we include the change in the
world state, denoted as ∆wk, occurring between
the previous action ak−1 and the next action ak.
∆w is a compressed representation of block opera-
tions and is in the same format as ∆W .
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The avatar’s position (xt, yt, zt) and orientation
(yawt, pitcht) represent the coordinates and facial
orientations in the environment.

4.3 Model Output
The model’s output is action at at turn t. The model
first outputs a token representing each action type,
followed by, for UTT, the utterance text ut, and
for BLOCK, the set of block operations bt. In this
paper, to reduce complexity, the block operations
are handled by dividing them into groups with up
to L block operations, and we set L as the average
size of b in the corpus, which is four. Therefore,
the maximum length of bt is four. All processing
is performed by the LM Head. To facilitate this,
tokens related to action types and block operations
are added to the tokenizer in advance.

5 Experiment

5.1 Settings
In this study, we investigated the performance of
the proposed model (Action-Utterance Model; AU)
and baselines for the Next Action-Utterance Gen-
eration Task using the Collaborative Garden Task
Corpus (Ichikawa and Higashinaka, 2022). Out of
the 1,092 dialogues in the corpus, we randomly
split the data and used 980 dialogues for training,
56 for validation, and 56 for testing.

To examine whether the proposed model can
determine the appropriate action type to take next
in a given context and perform suitable actions
and utterances, we prepared baselines for action
type classification, action generation, and utterance
generation.

For action type classification, we used the fol-
lowing two baselines:

Random Selects one of the four action types at
random.

Majority Always predicts the action type that is
most frequently observed in the training data.

For action generation, we used the following
baseline:

Random On the basis of the current world state,
one to four feasible block operations are ran-
domly selected.

Additionally, we established a human upper bound.
For this, one of the authors predicted the set of next
block operations to be performed for 20 samples
randomly extracted from the test data.

For utterance generation, we used the following
baseline:

Utterance Generation Only (UG) Transformer
decoder model trained only for the utterance
generation task. The model predicts the
next utterance on the basis of all preceding
utterances.

We used OpenCALM-Large2, a Japanese LLM
that contains 830 million parameters, and con-
ducted LoRA tuning using the PEFT library (Man-
grulkar et al., 2022). We optimized the model using
Maximum Likelihood Estimation (MLE). During
the evaluation, we used a checkpoint with the small-
est loss calculated using the validation data.

5.2 Evaluation

We prepared the following evaluation metrics for
each task: action type classification, action gener-
ation, and utterance generation. All metrics were
computed by comparing the ground truth data with
the inference results and yield values between 0 and
1, with higher values indicating better performance.

Accuracy Accuracy based on the classification re-
sults for action types and ground truth data.

Macro-F1 Macro-average of F1 scores calculated
from the classification results and ground truth
data for each action type.

BLEU-1, BLEU-2 Average BLEU-1 and BLEU-
2 (Papineni et al., 2002) scores calculated by
using generated utterances and gold response.
If the system fails to generate an utterance due
to the system predicting a value other than
UTT, the value will be 0.

Distinct-1 Distinct-1 (Li et al., 2016) calculated
on the basis of uni-grams of words present in
generated utterances.

Jaccard Jaccard index calculated for the generated
set of block operations b̄ and the ground truth
data b using the following formula.

Jaccard =
1

N

N∑

i=1

|b̄i ∩ bi|
|b̄i ∪ bi|

(2)

To allow for a more lenient evaluation, two
other metric values were also computed by
considering only the set of block operation
types (Jacc-type) and only the set of block

2https://huggingface.co/cyberagent/
open-calm-large
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Model Accuracy Macro-F1
Random 0.24 0.19
Majority 0.61 0.19
AU (ours) 0.81∗ 0.67

Table 1: Evaluation results for action type classification.
Bold indicates best value. ∗ indicates Accuracy was
significantly better than Random and Majority at p <
0.05 in McNemar test with Bonferroni correction.

Model Jaccard Jacc-type Jacc-loc
Random 0.00 0.04 0.00
AU (ours) 0.17∗ 0.38∗ 0.27∗

Human 0.30 0.55 0.32

Table 2: Evaluation results for action generation. Bold
values indicate best value except for Human. ∗ indi-
cates metrics were significantly better than Random at
p < 0.05 in Wilcoxon signed-rank test with Bonferroni
correction.

positions (Jacc-loc). If the system fails to gen-
erate an action due to the system predicting a
value other than BLOCK, the value will be 0.

5.3 Results
Table 1 shows the results for action type classifi-
cation, Table 2 shows those for action generation,
and Table 3 shows those for utterance generation.
The proposed model significantly outperformed the
baselines in action type classification and action
generation. Furthermore, it achieved a higher score
in utterance generation compared with the baseline,
especially in terms of Distinct-1. These results
show that the proposed model can effectively deter-
mine the appropriate next action types and generate
better actions and utterances by handling both ac-
tion and utterance generation in a unified model.

Figure 3 shows a sample from the test data and
actions generated by the proposed model and the
baseline. The proposed model, while selecting to
utter, generated utterances relevant to the flow of
the dialogue and the current world state.

6 Analysis

To understand the current challenges with the pro-
posed model, we conducted a detailed analysis of
the inference results. When categorizing action
generation on the basis of the characteristics of
ground truth block operations, we found that the
Jaccard index was high at 0.20 when the same types
of blocks as the previous actions were included,

Model BLEU-1 BLEU-2 Distinct-1
UG 0.148 0.096 0.136
AU (ours) 0.153 0.098 0.155

Table 3: Evaluation results for utterance generation.
Bold indicates best value.

while it dropped significantly to 0.07 when they
were not. Similarly, when adjacent blocks were
included as previous actions, the Jaccard index was
high at 0.21, but it was low at 0.10 when they were
not. These results show that predicting cases un-
related to the last actions is a challenge. They
also suggest that there is insufficient grounding be-
tween dialogue and the world state and a lack of
understanding of symmetries and regularities that
humans comprehend.

7 Conclusion

In this study, we proposed a novel model for simul-
taneously generating actions and utterances during
collaborative work in Minecraft. The experimen-
tal results showed that the proposed model can
autonomously determine whether to act or utter
and generate better actions and utterances than the
baselines. Furthermore, we analyzed the inference
results and revealed the difficulty in generating ac-
tions unrelated to the last actions.

There are limitations in our study. We compared
our proposed model to simple baselines for action
type classification and action generation; we need
to perform comparisons with models introduced
in previous work such as (Mohanty et al., 2023)
and (Mehta et al., 2023). In addition, we only con-
ducted turn-level evaluations; we need to consider
dialogue-level evaluations in order to more accu-
rately measure the model’s performance. While we
utilized the Jaccard index as the evaluation metric
for action generation in this paper, the similarity of
block operations may not be sufficient; therefore,
we would like to conduct human evaluations and
explore more appropriate evaluation metrics.

Additionally, we will also work towards building
systems capable of actual collaborative dialogue.
Due to the high flexibility of the next action and
collaborative work themselves, rather than opti-
mizing by MLE, we will aim to acquire higher-
performing dialogue agents by incorporating rein-
forcement learning.
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Figure 3: Samples from test dataset and generation example for proposed model (translated to English by authors)
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Abstract

Recent advancements in biomedical NLP have
been driven by domain-specific pre-trained lan-
guage models (LMs), yet the challenge of ef-
fectively storing extensive biomedical factual
knowledge remains. Despite the superior per-
formance of fine-tuned LMs in downstream
NLP tasks, these models exhibit limitations
in ontology memorization, reasoning abilities,
and capturing complex specialized domain ter-
minology. To address these issues, we present
four research questions that explore the integra-
tion of LMs with large knowledge graphs (KGs)
like the Unified Medical Language System
(UMLS). Our proposal introduces novel align-
ment methods to bridge LMs with the UMLS
KG, with the aim of leveraging structured back-
ground knowledge to enhance the reasoning
and generalization capabilities of biomedical
LMs. The research proposal discusses multi-
lingual specifics of KBs and evaluation metrics
across various datasets.

1 Introduction

Recent years have witnessed significant progress
in various biomedical Natural Language Process-
ing (NLP) caused by domain-specific pre-trained
Language Models (LMs) (Lee et al., 2020; Peng
et al., 2019; Alsentzer et al., 2019; Beltagy et al.,
2019; Michalopoulos et al., 2021; Gu et al., 2022;
Yasunaga et al., 2022b). Although, these models
demonstrate superior performance on Biomedical
Language Understanding and Reasoning Bench-
mark (BLURB) (Gu et al., 2022) and BigBio bench-
mark (Fries et al., 2022), their ability to store
extensive biomedical factual knowledge remains
an open question. In the general domain, Large
LMs (LLMs) were shown to have limited ontology
memorization and reasoning abilities (Wu et al.,
2023). Existing research on biomedical knowl-
edge probing task indicate that the biomedical LMs
struggle to capture complex specialized domain

terminology (Meng et al., 2022), are highly bi-
ased towards certain prompts, and are unaware
of synonyms (Sung et al., 2021). Making LM
well-informed about in-domain facts could assist
various NLP applications including drug discov-
ery (Wu et al., 2018; Khrabrov et al., 2022; Zitnik
et al., 2018), clinical decision making (Sutton et al.,
2020; Peiffer-Smadja et al., 2020), and biomedical
research (Lee et al., 2016; Fiorini et al., 2018; Soni
and Roberts, 2021).

In the biomedical domain, vast multilingual
Knowledge Bases (KBs) such as the Unified Medi-
cal Language System (UMLS) (Bodenreider, 2004)
are available, making the infusion of factual knowl-
edge into LMs possible. Over 166 lexicons/thesauri
with over 4M concepts and 15M concept names
from 27 languages are present in the UMLS. How-
ever, as seen from Tab. 1, severe language imbal-
ance is a great challenge for processing texts in
low-resource languages.

In KBs, factual information is usually stored in
the form of knowledge triples (h, r, t). Each triple
reflects the fact that concept h is in relation to type
r with concept t. The combination of concept set
V and relation triples E ∈ {V × R × V } can be
seen as a knowledge graph (KG) G = G(V,E,R)
where R is a set of possible relation types. Al-
though plenty of research focused on developing
effective knowledge-augmented general-purpose
pre-training methods for LMs, this topic remains
challenging. One approach is to apply an LM on
textual sequences augmented by KB triples (Wang
et al., 2019a; Mannion et al., 2023; Xu et al., 2023;
Liu et al., 2020). These approaches share two major
limitations (Ke et al., 2021). First, the fully con-
nected nature of the attention mechanism present
in modern LMs contradicts the sparse structure of
the existing KB graphs. Second, the linearization
of a KB graph prevents a direct alignment between
the textual and the KB modalities. Wang et al.
(2021) obtained representations for Wikipedia en-
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Figure 1: Visualization of different approaches towards knowledge-enhanced LM training. A: During KB-enhanced
LM pre-training or fine-tuning, a text encoder and a graph encoder independently minimize a textual loss (i.e.,
masked language modeling) and a graph-related task (i.e., link prediction) with an implicit interaction between the
two encoders. An implicit interaction may be in the form of LM embeddings being initial node representations
for the graph model. B: A less common approach is to add an explicit alignment loss to stimulate an information
exchange between two modalities. Named entities can serve as anchor points for this kind of intermodal interaction.

tities by encoding short textual entity and relation
descriptions with an LM, which is not feasible in
the biomedical domain since most biomedical con-
cepts lack a textual description.

As LM pre-training from scratch requires exten-
sive computational resources, a cheaper alternative
is a task-specific KB-aware fine-tuning. Recently,
a series of studies focused on the utilization of the
UMLS concept names and inter-concept relations
for improved Biomedical Concept Normalization
(BCN) (Liu et al., 2021a,b; Yuan et al., 2022b;
Sakhovskiy et al., 2023). While GEBERT pro-
posed by Sakhovskiy et al. (2023) explicitly learns
the identity between synonymous concept names
and concept node representations, the model is ex-
tremely tied to BCN and leaves no room for its gen-
eralization to other biomedical tasks. Recently pro-
posed Question Answering (QA) (Yasunaga et al.,
2022a, 2021a; Zhang et al., 2022b) systems adopt
Message Passing (MP) (Gilmer et al., 2017) graph
neural networks to perform well-grounded reason-
ing over KB which results in an improved quality
in both general and biomedical domains. These
models rely on implicit interaction between an LM
and a graph encoder and do not explicitly learn an
alignment between two modalities, thus limiting
LM’s ability to memorize KB facts.

2 Related work

An extensive comparison of various biomedi-
cal knowledge representation learning approaches
was conducted by Chang et al. (2020). They
compared semantic matching methods, such as
TransE (Bordes et al., 2013), DistMult (Yang
et al., 2015), ComplEx (Trouillon et al., 2016),
SimplE (Kazemi and Poole, 2018), and Ro-
tatE (Sun et al., 2019), for link prediction quality
on SNOMED-CT dataset. Although these methods
outperform simpler Snomed2Vec (Agarwal et al.,
2019) and Cui2Vec (Beam et al., 2020) baselines,
they fall short of LM-based approaches (Wang
et al., 2019a).

Several attempts to integrate a pre-trained
biomedical LM with an external KB have in-
creased performance in various downstream tasks.
Sakhovskiy et al. (2021); Sakhovskiy and Tu-
tubalina (2022) employed DrugBank (Wishart
et al., 2008, 2017), a drug-oriented chemical
database, to combine LM embeddings with drug
chemical features in a classification layer to de-
tect texts that mention an adverse drug reaction.
SapBERT (Liu et al., 2021a,b) achieved state-of-
the-art Medical Concept Normalization (MCN)
performance by applying a contrastive objective
to learn from synonymous biomedical concept
names from the Unified Medical Language System
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(UMLS) ontology. CODER (Yuan et al., 2022b)
and GEBERT (Sakhovskiy et al., 2023) extended
the idea by introducing additional graph-based
contrastive objectives to capture inter-concept re-
lations from the UMLS graph. CODER (Yuan
et al., 2022b) and multilingual SapBERT (Liu et al.,
2021b) achieve a normalization improvement in
both monolingual English and multilingual setups.

In both general and biomedical domains, numer-
ous state-of-the-art QA solutions retrieve a relevant
subgraph from a KB (Lin et al., 2019; Feng et al.,
2020; Yasunaga et al., 2021a; Zhang et al., 2022b,a;
Yasunaga et al., 2022a) to perform a knowledge-
aware reasoning. Yasunaga et al. (2022a) proposed
a language-knowledge DRAGON model that bene-
fits from joint language modeling and graph com-
pletion objectives and bidirectional interaction be-
tween text and graph encoders in both general and
biomedical domains.

Thus, the existing knowledge-enhanced text pro-
cessing models possess at least one of the following
key limitations. First, they are too tied to a spe-
cific downstream task, such as MCN or QA. Sec-
ond, they provide no explicit alignment between
a biomedical concept and its mention in a text but
instead rely on implicit interaction between textual
and graph encoders. Third, except for multilin-
gual BCN methods, they mostly focus on English,
which has the most extensive KBs, ignoring a low-
resource case.

3 Research plan

3.1 Research questions

Although a wide range of knowledge-aware Lan-
guage Modeling techniques have been proposed,
several fundamental research questions remain
unanswered. In this proposal, we formulate some
important questions as well as possible trajectories
for answering them. First of all, we see three major
knowledge fusion strategies:

1. Knowledge-enhanced LM pre-training from
scratch;

2. KB-augmented task-specific fine-tuning;

3. Alignment between pre-trained LM and infor-
mative KB representations.

RQ1. What is an optimal knowledge fusion
strategy?

Language # concept names percentage

English 11,280,428 70.78%
Spanish 1,589,581 9.97%
French 431,527 2.71%

Portuguese 423,826 2.66%
Japanese 332,099 2.08%

Dutch 293,817 1.84%
Russian 293,031 1.84%
Italian 251,912 1.58%

German 235,736 1.48%
Czech 198,115 1.24%
Korean 147,217 0.92%

Hungarian 109,271 0.69%
Chinese 81,916 0.51%

Norwegian 63,797 0.4%
Polish 51,778 0.32%

Turkish 51,597 0.32%
Estonian 31,183 0.2%
Swedish 30,439 0.19%
Finnish 25,489 0.16%
Croatian 10,035 0.06%

Greek 2,286 0.01%
Latvian 1405 0.01%
Danish 723 0.1%
Basque 695 <0.1%
Hebrew 485 <0.1%

Table 1: UMLS statistics on the number of concept
names.

While existing knowledge-enhanced general-
domain and biomedical LMs benefit from pre-
training with external knowledge, they usually
share at least one of the following critical lim-
itations. First, they imply a modification of an
LM architecture (Peters et al., 2019; Zhang et al.,
2022b; Yasunaga et al., 2022a). Second, they re-
quire additional pre-training of all model param-
eters on textual inputs augmented with external
knowledge (Wang et al., 2021; Lauscher et al.,
2020; El Boukkouri et al., 2022; Yuan et al., 2022a;
Mannion et al., 2023). Both limitations lead to a
resource-intensive pre-training of all the LM param-
eters from scratch which might not be feasible. Re-
cently proposed FROMAGe (Koh et al., 2023b) and
GILL (Koh et al., 2023a) in text-and-image domain
propose to align image representations with their
textual captions via contrastive InfoNCE (Oord
et al., 2018) objective in a significantly more light-
weighted scenario of frozen textual encoder. With
far less trainable parameters, these alignment meth-

84



ods manage to even outperform fully trainable bi-
modal Transformer (Vaswani et al., 2017) models.
Inspired by the success of alignment-based strat-
egy in text and image tasks, we strive to explore
its applicability and effectiveness in the biomedi-
cal domain in comparison with the remaining two
strategies.

RQ2. How to align KB and LM in the biomed-
ical domain?

To the best of our knowledge, no LM and
biomedical KB representation alignment method
is proposed so far. A direct adaptation of GILL
and FROMAGe to biomedical texts and KBs is
hindered by two critical issues. First, both models
rely on Transformer encoder-decoder architecture
and adopt text generation tasks, while the majority
of the existing state-of-the-art biomedical LMs are
encoder-only BERT models (Alsentzer et al., 2019;
Peng et al., 2019; Beltagy et al., 2019; Lee et al.,
2020; Gu et al., 2022; Liu et al., 2021a; Mannion
et al., 2023). Second, while image-to-text and text-
to-image tasks are inherently bi-modal, it is not
the case for most biomedical NLP tasks (i.e., only
textual sequence is provided during fine-tuning and
evaluation).

3.1.1 RQ3. How to enrich an LM with
biomedical knowledge?

Current biomedical knowledge probing bench-
marks (Sung et al., 2021; Meng et al., 2022) in-
dicate that the existing domain-specific LMs lack
factual knowledge. This might be caused by ei-
ther of two reasons: (i) imperfection of prompting
approaches or (ii) an actual absence or incomplete-
ness of knowledge in LMs. We believe, the inte-
gration of in-domain knowledge from biomedical
KBs (e.g., interaction between biomedical concepts
from the UMLS) remains an open challenge and
requires a thorough exploration.

RQ4. How to exploit rich English KBs for
low-resource languages?

Most existing research in biomedical NLP em-
ploy extensive English data leaving low-resource
languages out-of-scope. While the alignment of
multilingual UMLS concept names was shown to
significantly improve the BCN quality in uni-modal
setting (Liu et al., 2021b; Yuan et al., 2022b), they
still struggle to deal with severe language imbal-
ance of the UMLS concept names (see Table 1).
Alternatively, the UMLS KB can be approached
from a bi-modal text and graph perspective with
graph modality capturing language-independent

concept node’s features.

3.2 Proposed methodology

3.2.1 Representation alignment
Currently, the alignment of textual and KB repre-
sentations remains under-expored topic. To answer
RQ1 and RQ2 we plan to develop novel align-
ment methods. To align textual representations
with KB knowledge, we plan to use biomedical
concept representations obtained from their contex-
tualized mention embeddings in texts. We foresee
two possible alignment approaches: (i) implicit
alignment via an auxiliary KB-guided training ob-
jective and (ii) via an explicit alignment of textual
and graph representations.

Implicit alignment One of the ways to enable
information exchange between two or more modal-
ities is to introduce a multi-modal objective. Prior
work on general domain QA (Yasunaga et al.,
2022a; Ke et al., 2021) introduced multi-task text
and graph restoration objectives to learn from
aligned textual sequences and KB subgraphs of en-
tities mention in a text. However, this approaches
rely on implicit interaction between text and graph
modalities and do not explicitly inform the model
that the subgraph is induced by text and is in fact
its alternative representation obtained from another
modality. In our work, we plan to adopt and extend
the idea of graph restoration objective the idea and
consider two its following cases:

• Single modality graph restoration: Follow-
ing Yasunaga et al. (2022a) and Ke et al.
(2021) we will treat text and graph restora-
tion tasks as separate uni-modal tasks with a
single graph encoder to encode both head and
tail concepts of a triple;

• Mixed-modality graph restoration: As LM-
and graph-based representations of a concept
are complementary, we propose to initialize a
head concept with an embedding of the first
modality and a tail concept with an embedding
of the second one.

While the first case is conventional, the mixed-
modality problem statement is, to the best of our
knowledge, under-explored. For both cases, we
will employ TransE or ComplEx which model a
tail concept as a relation-based transformation of a
head concept.
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Explicit alignment Another way to combine
multiple modalities is to explicitly inform the
model that text and graph embeddings are two com-
plementary representations of a single concept.

Early attempts of alignments of graphs with lin-
guistic models were presented by Biemann et al.
(2018): sparse representations of graphs were
linked with sparse distributional representations
of word senses. Nikishina et al. (2022) attempts to
align standard text BERT model with graph-based
BERT by learning projections of their internal rep-
resentations. Similarly, projections between static
graph and text embeddings can be used for comput-
ing similarity search in graphs given text e.g. for
question answering (Huang et al., 2019).

In prior work (Sakhovskiy et al., 2023), a con-
trastive objective was applied to learn from bi-
modal positive pairs consisting of a concept name
and a concept node. GILL and FROMAGe ben-
efited from aligning in-context LM tokens and
images via a contrastive objective and a small
alignment model. In our research, we plan to
combine these two approaches and perform an in-
context alignment of contextualized concept men-
tions and their graph representations obtained from
the UMLS via a graph encoder. We expect to in-
troduce either the Multi-Similarity (Wang et al.,
2019b) or the InfoNCE (Oord et al., 2018) loss
function, to directly minimize the distance be-
tween textual and graph representations of the same
biomedical concept.

3.2.2 Knowledge probing

Two possible ways to improve LM capabilities as
KB and answer RQ3 are (i) an improvement of
prompting strategies and (ii) a modification of LM
and its training pipeline. Although Meng et al.
(2022) and Sung et al. (2021) have observed a prob-
ing quality improvement after a proper prompt tun-
ing, the task is still far from being solved with
about only 10% in terms of accuracy. We will stick
to the second option and attempt to improve the
knowledge awareness of biomedical LMs through
alignment with KB modality: both implicit and
explicit. As current biomedical knowledge probing
benchmarks require filling masked concepts in a
prompt inferred from a knowledge triple, we will
investigate the knowledge infusion as a bi-modal
problem and focus on the following knowledge
probing problem statements:

Uni-modal textual approach involves filling
masked concept slot using solely an LM;

Bi-modal text and KB approach reformulates
triplet completion baseline as a bi-modal text-to-
graph task: given a textual prompt, the goal is to
predict the best matching KG node.

While text-only approaches commonly struggle
with multi-word concept names, we aim at ex-
ploring whether the reformulation of the task will
help overcome the issue. Moreover, the second
approach enables the incorporation of aforemen-
tioned modality alignment strategies: both explicit
and implicit.

3.2.3 Cross-lingual alignment
We expect to address the RQ4 with the cross-
lingual cross-modal representation alignment.
While a fixed concept name is monolingual, a con-
cept itself is multilingual from the language per-
spective and is independent of language from the
graph perspective. While cross-lingual concept
name alignment improved BCN quality (Liu et al.,
2021b; Yuan et al., 2022b), our goal is to investi-
gate whether cross-modal alignment could further
boost the performance. Unfortunately, application
on other biomedical tasks is hindered by the lack
of non-English data but the experiments on BCN
could serve as a good starting point.

3.3 Experimental setting

Training data As training data for various align-
ment methods, we will utilize PubMed abstracts.
To recognize and align textual concept mentions
with UMLS concepts, we will adopt BERN2 (Sung
et al., 2022), a recently proposed biomedical entity
recognition and normalization tool.

Text and graph encoders To obtain language
representations, we will adopt PubMedBERT (Gu
et al., 2022), a state-of-the-art biomedical LM pre-
trained on PubMed abstracts. To produce graph
representations, we will adopt the Message Passing
framework (Gilmer et al., 2017) and obtain concept
node embeddings with either GraphSAGE (Hamil-
ton et al., 2017) or GAT (Veličković et al., 2018)
encoder. Each node will be initialized with a Pub-
MedBERT embedding of its concept name at ran-
dom.

Computational efficiency Since for alignment
strategy, we assume both textual and graph encoder
are already well-trained, we strive to explore if
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we can reduce the computational burden of the
alignment procedure. For each encoder, we will
consider three cases: (i) fully frozen encoder with a
small external alignment model, (ii) partially frozen
encoder, (iii) fully trainable encoder.

Concept masking To enforce a KB-aligned LM
learns from full context rather than concept men-
tions only, we will mask concept mentions with
a fixed probability. Similarly, to stimulate graph
encoder pass more informative messages from con-
cept neighboring concepts in a KG, we will mask a
concept name of an anchor. Masking is expected
to improve model’s compatibility with knowledge
probing benchmarks.

3.4 Evaluation
Fries et al. (2022) released BigBio, a large data-
centric benchmark that includes 126 biomedical
NLP datasets, covering 13 tasks, including QA
and BCN in more than 10 languages. To an-
swer the RQ1 and RQ2, we will primarily fo-
cus on QA and BCN since these tasks already
have knowledge-enhanced task-specific solutions
to compare with. To explore the RQ4, we will com-
pare against current state-of-the-art cross-lingual
models for BCN (Liu et al., 2021b; Yuan et al.,
2022b; Sakhovskiy et al., 2023) and addition-
ally adopt two cross-lingual BCN benchmarks
for zero-shot ranking-based avaluation: (i) the
one (Alekseev et al., 2022) based on Mantra cor-
pus (Kors et al., 2015) and (ii) XL-BEL (Liu et al.,
2021b). We will adopt KG-enhanced state-of-the-
art QA models: QA-GNN (Yasunaga et al., 2021b),
GreaseLM (Zhang et al., 2022b), JointGT (Ke et al.,
2021), and DRAGON (Yasunaga et al., 2022a)
as knowledge-enhanced QA baselines. For both
BCN and QA as well as other tasks, we will
adopt strong domain-specific biomedical LMs, e.g.,
BioBERT (Lee et al., 2020).

For biomedical knowledge probing task and
RQ3, we will adopt the aforementioned Med-
LAMA and BioLAMA benchmarks. We will eval-
uate against the existing biomedical LMs, such as
the BioBERT (Lee et al., 2020), Bio-LM (Lewis
et al., 2020), and PubMedBERT (Gu et al., 2022).

4 Conclusion

In this paper, we identify critical limitations of
the existing domain-specific pre-trained biomedical
LMs and current state-of-the-art domain-specific
solutions for solving downstream NLP tasks. We

raise four important research questions and present
a plan for exploring them. Modern LMs are unable
to reveal the potential of factual knowledge fully
and lack an explicit text-KB alignment procedure
in current pre-training pipelines. While the usage
of KB has already advanced the quality of biomed-
ical concept normalization and question answering,
a method for the fusion of domain knowledge into
a general-purpose biomedical LM awaits to be ex-
plored. To overcome the existing LM limitations,
we propose ideas for explicit alignment of KB con-
cepts and their representatives in texts. The com-
pletion of our research plan is expected to deepen
the understanding of text-KB interaction and give a
better understanding of an optimal strategy for KB
utilization in biomedical NLP.

Acknowledgements The work has been sup-
ported by the Russian Science Foundation grant
# 23-11-00358.

5 Ethics, limitations, and risks

Large domain-specific graphs. We plan to em-
ploy a large biomedical knowledge graph, the Uni-
fied Medical Language System (UMLS), which
contains over 4 million concepts and 15 million
concept names. It is important to note that us-
ing knowledge graphs for different domains with
a smaller number of nodes and edges may affect
the performance. The knowledge graph’s size and
complexity can significantly impact the model’s
ability to learn and make accurate predictions.

Biases. Consequently, it is important to acknowl-
edge that trained models can inherit biases and
toxic behaviors present in the language models
and knowledge graphs used for their initialization.
Language models, for instance, have been demon-
strated to incorporate biases about race, gender, and
other demographic attributes. Biomedical research
and clinical trials may not adequately represent
certain populations. Likewise, a knowledge graph
may incorporate stereotypes instead of providing
unbiased, commonsense knowledge.

Diversity of biomedical concepts. It is impor-
tant to highlight that the datasets and knowledge
graphs primarily focus on well-documented med-
ical concepts found in the literature. This limits
the exposure of models to infrequent or uncommon
occurrences. Consequently, adapting trained mod-
els to handle rare biomedical events may require
additional effort and attention.
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Abstract

As machine learning models grow increasingly
sophisticated, the question of their reliabil-
ity and understanding becomes critical, espe-
cially within specialized domains like finance,
medicine, and law. Definition modeling, the
task of generating a textual definition from a
word, has proven a useful technique to help
better understand word sense and embeddings,
which is at the core of language learning and
word acquisition. Drawing upon a repository of
financial terminology (Investopedia), we build
a dataset of 14,000 terms and definitions. We
design a number of tasks to evaluate the capac-
ity of various LLMs to generate accurate and
expansive definitions in this domain, and pro-
pose to utilize definition modeling to probe the
abilities of Large Language Models (LLMs) in
the context of the financial domain. Using our
dataset, we present an empirical study where
we test a broad selection of LLMs on our tasks
with zero-shot and k-shot approaches. We show
the extent to which these models are able to
define financial terms. We observe large per-
formance increases for smaller models with in-
context learning, and see that they are almost
comparable to GPT-3.5. Our work shows the
boons of using definition modeling to evaluate
models in more specific fields of study, such as
finance.

1 Introduction

Definition modeling is the task of estimating the
probability of a textual definition, given a word
being defined. Since its conception (Noraset et al.,
2017) several approaches have tackled this task,
and over the past few years have achieved substan-
tial performance improvements. This task has been
shown to give an arguably more transparent view
of the extent to which syntax and semantics are
captured by a model.

So far, existing approaches for this task have
followed the traditional approach, where models

are trained on a corpus of word-definition pairs to
later be tested on how well they generate definitions
for words not seen during training. However, the
recent success of Large Language Models (LLMs)
has caused a shift in our field, showing that such
models can achieve excellent performance on a
wide variety of downstream tasks, utilizing zero-
shot or few-shot approaches (Brown et al., 2020;
Kojima et al., 2022), i.e. without fine-tuning.

Term Definition (1st Key Takeaway)

Enterprise
value
(EV)

Enterprise value (EV) measures a com-
pany’s total value, often used as a more
comprehensive alternative to equity mar-
ket capitalization.

Bonds Bonds are units of corporate debt issued
by companies and securitized as tradeable
assets.

Table 1: Examples of Term-Definition pairs taken from
dataset built out of Investopedia

Furthermore, while the definition modeling task
was originally intended for the study of general
words, we note that some recent work has fo-
cused on extending the task to domain specific
terms. These works propose domain specific mod-
els trained to define specialized terminology. While
these efforts are welcome, and remain an interest-
ing and useful approach, we note that they are still
limited in terms of scope, with key domains such
as finance or chemistry, being left out so far.

In this paper, we tackle the two aforementioned
issues by: (1) Using definition modeling tasks as
a probe to test the abilities of LLMs in a zero-
shot or few-shot setting, motivated by the original
ideas of (Noraset et al., 2017), and (2) Introducing a
new dataset with 14,000 term-definition pairs in the
financial domain - so far an unexplored direction
which we believe is particularly relevant due to
the way in which LLMs are trained, while also

93



presenting relevant use-cases.
To this end, we construct a new dataset of ap-

proximately 14,000 terms specific to the financial
domain. Table 1 shows examples of how our data
looks like. We use this new dataset to assess the
quality of financial definitions generated from some
of the latest LLMs with a zero-shot and few-shot
approach. Our proposals offer a concrete direction
for prompting methodology, examining variables
such as number of shots, usage of word context,
role of domain, and evaluation.

Our experiments show that while some of the
larger and most cutting-edge LLMs are able to de-
fine financial terms, they outperform classical defi-
nition modeling tasks. Our choice of COMET as
an evaluation metric also appears like an adequate
metric to use for definition modeling tasks. Lastly,
we release our code to encourage research in this
direction1.

2 Related Work

Our work is primarily related to the seminal work
by Noraset et al. (2017) and Hill et al. (2016), in
which a model is tasked with generating a defi-
nition for a word given its respective embedding,
or with mapping dictionary definitions to lexical
representations of words, respectively.

After this, several works have proposed improve-
ments. Many introducing techniques and datasets
to address several shortcomings of the initial ideas.
For example, Gadetsky et al. (2018) addresses poly-
semy and presents a dataset from Oxford Dictionar-
ies, where each definition is also supplemented
with context sentences, in which each example
word is used, allowing models to disambiguate.
Ni and Wang (2017) proposed an approach for au-
tomatically explaining slang English terms in a
sentence, and introduced yet another dataset. Ishi-
watari et al. (2019) and Reid et al. (2020) propose
to further rely on local and global contexts, with
the latter also introducing a dataset based on Cam-
bridge Dictionaries, and a dataset for French.

More recently, Huang et al. (2021) study the
problem of definition specificity, and propose a
method for tuning a model to account for hyper
focused (over-specific) or highly general (under-
specific) definitions. Chen and Zhao (2022) pro-
pose to unify the seminal ideas of reverse dictionary
and definition modeling in a single model, with the
goal of helping better understand word sense and

1https://github.com/KobiJames/Financial-DefMod

embeddings.
Finally, we find several works aiming to gen-

erate definitions in specialized fields, whose ef-
forts are well aligned with our work. August et al.
(2022) propose to generate definitions of scientific
and medical terms with varying complexity, us-
ing a dataset constructed from consumer medical
questions and science glossaries (MedQuAD and
Wikipedia). Liu et al. (2021) introduce Graphine, a
dataset for biomedical terminology definition, and
Huang et al. (2022) propose to model ‘jargon’, with
a dataset constructed semi-automatically based on
Wikipedia and Springer. Though our work is sim-
ilar, since we also extend definition modeling to
a new domain, critically our approach differs as
we ‘probe’ our models’ understanding of financial
terms through definition modeling.

3 The INVESTOPEDIA Dataset

To construct a dataset of financial terms, we rely
on Investopedia, an extensive repository of finan-
cial information and terminology. We initiated
our data collection by fetching every available link
on the website. Out of approximately 25,000 ex-
tracted links, half were found to contain articles
or news discussing specific events, while the re-
maining comprised pages focused on delineating
specific financial terms or concepts.

The extraction of the main term from the article
presented a complex task due to the variety in arti-
cle title structures. To achieve this, we employed
a set of heuristics that guided the selection of the
most appropriate string as the main term, which
were also combined with manual annotation.

A similar strategy was used for identifying po-
tential acronyms associated with each term, incor-
porating both heuristic and manual processes.

Investopedia Dataset

# of Terms 13,609

Definition Length (in tokens) 19.69 ± 7.33

Mean # Key Takeaways 3.66

Oxford Dataset

# of Terms 122,319

Definition Length (in tokens) 11.03 ± 6.97

Table 2: Statistics on our financial data and the Ox-
ford dataset. The definitions for the financial data is
considered to be the first key takeaway.
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The second phase of our data scraping involved
the extraction of the “Key Takeaways” section
found in each article. This section, typically con-
sisting of 3 to 5 bullet points summarizing the ar-
ticle, is a critical part of our dataset. We chose
to leverage this section over the first paragraph to
generate the definitions for each term. The choice
of the “Key Takeaways” section over the first para-
graph was primarily due to its structure and ease
of extraction. While both sections offered a gen-
eral description of the term, the former provided
something more akin to a set of distinct ‘mini def-
initions’. Each point in the “Key Takeaways” is
grammatically independent of the previous, and
captures something different about the article than
the other points. This encapsulation of the entire ar-
ticle’s content in conveniently parsed pieces, made
it an ideal source for our definitions.

Our finalized dataset consists of data points, each
corresponding to a single article. The primary com-
ponents of each data point include the processed
term name, any associated acronym, and a list of
key takeaways serving as the definition. Supple-
mentary data, added for convenience and potential
further research, encompasses the article’s header,
and the full text of the article, separated by HTML
tags (‘h1’,‘h2’,‘p’, etc...) and ordered from top to
bottom in an array.

4 Empirical Study

4.1 Experimental Setup

To test the abilities of LLMs in performing defini-
tion modeling in the financial domain, we leverage
the “Key Takeaways” section in INVESTOPEDIA.
Based on the success of previous work in augment-
ing definition modeling with contextual informa-
tion (Gadetsky et al., 2018; Ishiwatari et al., 2019;
Reid et al., 2020), we additionally leverage sample
phrases from the article content, which we present
to the models as context in addition to the term, for
generating the definition. They are presented to our
models by appending them to the prompt, and we
refer to them as “examples” in further discussion.

The structure and wording of the prompts pre-
sented to the models were established through a sys-
tematic testing process. Most notably, we observed
that prompting the models with the task to define a
“financial term” led to consistently significant per-
formance improvements. A similar improvement
was seen when the models were asked to present
their responses as points or bullet points, leading us

to incorporate these findings into our final prompt,
which we used across all the experimental runs in
the zero-shot scenario. For our experiments incor-
porating examples or for the k-shots settings, we
append each phrase or shot above the prompt, and
add a newline character to separate the base prompt,
examples, and shots. For prompts with both exam-
ples and shots, shots are put above examples. For
prompts with examples, we use two examples, and
for prompts with shots, we use two shots. Please
see our supplementary material for details.

Regarding model choice, we consider a broad
section of LLMs varying widely in terms of
the number of parameters and training scheme.
Concretely, we work with the following mod-
els: OPT-IML 1.3B (Iyer et al., 2023), GPT-J
(6B parameters) (Wang and Komatsuzaki, 2021),
GPT-JT (6B parameters) (Rel, 2022), MT0-XXL
(13B parameters), FLAN-UL2 (20B parameters)
(Tay et al., 2023; Muennighoff et al., 2023), and
ChatGPT/GPT-3.5 Turbo (175B parameters).

In terms of evaluation, we note that previous
work has mainly utilized n-gram overall metrics
such as BLEU (Papineni et al., 2002) and ME-
TEOR (Banerjee and Lavie, 2005). Reid et al.
(2020) showed that by migrating to metrics based
on Machine Learning (ML), such as BERTScore
(Zhang et al., 2019), it was possible to more ade-
quately capture nuance in the definitions generated
by their approach, which led more recent models
to adopt this evaluation metric as well. In this
paper, we take another step in this direction and
experiment with COMET (Rei et al., 2020) as an
evaluation metric for our task. Though COMET
is intended for evaluation of Machine Translation
models, in our early experiments we found that
it offered a robust alternative to other ML-based
metrics such as BERT-Score and worked well at
capturing the ability of the models at generating
accurate and expansive definitions.

We also note that the complexity of our terms,
evidenced by the length and detail of the “Key Take-
aways” section of our dataset, pose a considerable
challenge in our evaluation process. We observe
that any of the takeaway points can, to a degree,
serve as a separate definition of the term. To avoid
penalizing the model when it generates such rel-
evant information, we propose a scoring scheme
where we compare the output of the model against
combinations of “Key Takeaways”. Let xi be our
target financial term. For i ∈ [1 . . . L], we have
j ∈ [1 . . . Ni], where L is the size of our dataset,
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Data Model Params. COMET METEOR BLEU

base ex. sh. sh.+ex. base ex. sh. sh.+ex. base ex. sh. sh.+ex.
In

ve
st

op
ed

ia
(1

st
K

TA
W

)

OPT-IML 1.3B 47.82 47.41 59.75 60.01 15.92 17.11 25.96 29.74 4.54 5.26 6.48 6.36
GPT-J 6.0B 50.77 43.73 57.55 60.80 22.17 16.94 28.32 32.37 3.56 3.30 4.97 6.52
GPT-JT 6.0B 33.23 44.41 57.18 60.35 6.65 18.60 27.99 31.16 0.96 3.33 4.44 5.85
MT0-XXL 13B 55.21 64.55 63.06 66.10 24.68 30.18 24.82 28.85 4.90 7.81 6.72 8.95
FLAN-UL2 20B 66.30 68.49 68.15 68.98 27.30 30.17 30.16 32.31 7.93 10.16 9.73 10.66
GPT-3.5-Turbo 175B 68.64 69.12 68.51 69.79 35.82 37.29 36.63 38.22 5.74 6.36 6.73 7.15

In
ve

st
op

ed
ia

OPT-IML 1.3B 48.45 48.92 61.21 62.95 16.38 18.48 27.33 32.67 2.99 4.28 5.65 7.06
GPT-J 6.0B 52.11 45.27 59.93 63.77 23.56 18.39 29.86 34.97 3.93 3.81 5.51 7.55
GPT-JT 6.0B 33.99 45.98 59.61 63.68 7.12 20.49 29.62 34.39 1.01 3.76 4.98 7.01
MT0-XXL 13B 56.43 67.47 63.69 68.10 26.12 33.28 25.40 31.00 4.38 7.17 3.85 6.46
FLAN-UL2 20B 66.63 69.74 68.67 70.61 27.71 31.72 30.68 34.19 4.11 6.50 5.82 7.44
GPT-3.5-Turbo 175B 72.18 72.82 71.98 73.57 38.50 40.02 39.38 41.20 6.65 7.38 7.78 8.32

O
xf

or
d

OPT-IML 1.3B 32.66 32.88 47.23 49.02 2.78 2.65 7.80 9.09 0.29 0.39 3.29 3.43
GPT-J 6.0B 39.00 40.61 38.20 42.80 8.14 10.49 10.45 13.21 0.84 1.12 1.26 1.28
GPT-JT 6.0B 40.88 40.59 39.54 42.64 9.22 10.18 12.10 14.40 0.97 1.24 1.38 1.61
MT0-XXL 13B 46.08 50.39 33.75 39.45 8.70 9.75 3.32 8.50 2.80 3.35 0.50 1.40
FLAN-UL2 20B 45.72 50.10 47.52 50.46 6.73 9.83 8.41 10.70 2.63 4.03 3.40 4.40
GPT-3.5-Turbo 175B 55.93 59.69 57.96 61.75 23.90 27.99 25.26 29.93 3.57 4.74 8.63 9.84

Table 3: Scores across COMET, METEOR and BLEU on financial definition modeling tasks and the Oxford dataset
on “dictionary” definition modeling, where we use. ‘ex.’ to indicate use of examples, ‘sh.’ to indicate use of 2-shot,
and KTAW is short for “Key Takeaway”. Values which are bold & underlined are the best out of all the models;
values that are only underlined are the best results from open-source models

and Ni denotes the number of “Key Takeaways”
for term xi. Let yi,j be the jth “Key Takeaway”
for xi, and the set {yi,j |j ∈ [1 . . . Ni]} is the list
of sorted “Key Takeaways” to be used as targets.
Finally, let P (s) be the function that generates the
power set of a set s. Then, for a given evaluation
Metric M , our final score is computed following
Equation 1, below, where a;B denotes the sequen-
tial string concatenation of every element in B to
the end of a in order (i.e. a+ b1 + b2 + . . .).

Si := max{M(ŷ, [yi,1;K])|K ∈ P ([yi,2, . . . yi,Ni ])} (1)

The idea of combining “Key Takeaways” in such a
way derives from the fact that the first bullet point
typically provides the most straightforward defini-
tion of the term. By combining this with the rest
of the points, we ensured that a wide array of defi-
nitions, ranging from simplistic to comprehensive,
were accounted for in our evaluation scheme.

While this method of evaluation is holistic, it
also makes it difficult to compare results of our
evaluations against different datasets that lack this
type of information for their gold standard. Evalua-
tion scores could possibly be inflated, which would
cause an uneven comparison. Evaluations over our
dataset just using the first key takeaway as a gold
standard were added as a baseline for the purpose

of comparability. Finally, to understand the com-
plexity of defining financial terms, we also test our
approach on the dataset constructed from Oxford
dictionaries (Gadetsky et al., 2018). To the best
of our knowledge, our work is the first one to test
the abilities of LLMs on the “dictionary” definition
modeling task using zero-shot or few-shot settings.
We believe results on this will help contextualize
our results in the financial domain, while also giv-
ing new insight into the abilities of LLMs.

4.2 Prompts
The following is the prompt structure we used for
each term, as well as every variation of the prompt
we used for the term “A-B Trust”.

T ∈ Investopedia Terms

ET
i ∈ Examples for term T |i ∈ 0, 1

Si ∈ Shot List|i ∈ 0, 1

Prompt Structure
“S0

S1

ET
0

ET
1

Define, in a financial context, ‘[T ]’ with bullet
points. Please list up to 2 bullet points.
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Definition: ”
Prompt without examples or shots
“Define, in a financial context, ‘A-B trust’ with
bullet points. Please list up to 2 bullet points.
Definition: ”
Prompt with examples
“06 million will opt for an A-B trust in 2022
While A-B trusts are a great way to minimize estate
taxes, they are not used much today
Define, in a financial context, ‘A-B trust’ with bul-
let points. Please list up to 2 bullet points.
Definition: ”
Prompt with shots
“Define, in a financial context, ‘Enterprise Value’
with bullet points. Please list up to 2 bullet points.
Definition: Enterprise value (EV) measures a com-
pany’s total value, often used as a more compre-
hensive alternative to equity market capitalization.
Enterprise value includes in its calculation the mar-
ket capitalization of a company but also short-term
and long-term debt and any cash on the company’s
balance sheet.
Define, in a financial context, ‘Bond’ with bullet
points. Please list up to 2 bullet points.
Definition: Bonds are units of corporate debt issued
by companies and securitized as tradeable assets.
A bond is referred to as a fixed-income instrument
since bonds traditionally paid a fixed interest rate
(coupon) to debtholders.
Define, in a financial context, ‘A-B trust’ with bul-
let points. Please list up to 2 bullet points.
Definition: ”
Prompt with examples and shots
“Define, in a financial context, ‘Enterprise Value’
with bullet points. Please list up to 2 bullet points.
Definition: Enterprise value (EV) measures a com-
pany’s total value, often used as a more compre-
hensive alternative to equity market capitalization.
Enterprise value includes in its calculation the mar-
ket capitalization of a company but also short-term
and long-term debt and any cash on the company’s
balance sheet.
Define, in a financial context, ‘Bond’ with bullet
points. Please list up to 2 bullet points. Defini-
tion: Bonds are units of corporate debt issued by
companies and securitized as tradeable assets. A
bond is referred to as a fixed-income instrument
since bonds traditionally paid a fixed interest rate
(coupon) to debtholders.
06 million will opt for an A-B trust in 2022
While A-B trusts are a great way to minimize estate
taxes, they are not used much today

Define, in a financial context, ‘A-B trust’ with bul-
let points. Please list up to 2 bullet points.
Definition: ”

4.3 Results
The performance outcomes for all selected models,
based on INVESTOPEDIA are displayed in Table
3. We also show our results on the classic or “dic-
tionary” definition modeling task, for which all
models were evaluated under comparable configu-
rations. To assess the performance of the models,
three evaluation metrics were employed, namely
COMET, METEOR, and BLEU, with focus on the
former. We use four different prompting methods,
as described in section 4.1; ‘base’ for no shot, no
examples, ‘ex.’ for no shot, 2 examples, ‘shot’ for
2 shot, no examples, and ‘shot+ex.’ for 2 shots, 2
examples.

As shown in Table 3 we observe that the per-
formance of all considered models aligns with re-
spective size — the larger the model, the better the
performance. We also note that smaller models
seem to be unable to perform well without the help
of the additional context presented. Finally, the per-
formance gain of smaller models with in-context
learning is substantial relative to the baselines.

In our exploration of the effects of differing
prompting styles, an interesting pattern emerged,
particularly when contrasting the smaller models
with larger ones. The performance of MT0-XXL,
Flan-UL2, and GPT-3.5-Turbo increase when aug-
mented with examples in the prompt (i.e. from
base to ex., or sh. to sh.+ex.), while OPT-IML,
GPT-J, and GPT-JT are unaffected by this change.
This discrepancy is also seen in the results on the
Oxford dataset, further exemplifying the relevance
of this observation. Since, MT0-XXL, Flan-UL2,
and GPT-3.5-Turbo are larger models. This raises
a compelling hypothesis that, for models without
direct knowledge of terms, model size may be cor-
related with enhanced capabilities of utilizing non-
shot context to increase performance. This is seen
by the aforementioned model’s increase in perfor-
mance with examples over our other models.

Results on the Oxford dataset exhibit a decrease
in performance relative to the financial definition
modeling tasks. We ascribe this primarily to the
discrepancy in length between the Oxford gold stan-
dard and the model outputs, as can be seen in Table
2. The brevity of the Oxford definitions contrasts
with the verbose model responses, contributing to
the performance gap for GPT-3.5-turbo on a seem-
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Model COMET METEOR BLEU

INVESTOPEDIA
Ours (FLAN-UL2) 68.98 32.31 10.66

Oxford
Gadetsky et al. (2018) - - 23.77
Ishiwatari et al. (2019) - - 25.19
Reid et al. (2020) 57.00 35.05 27.38
Huang et al. (2021) - - 26.52
Ours (GPT-3.5-Turbo) 61.75 29.93 9.84

Table 4: Comparison of our best performing mod-
els against state-of-the-art approaches for the Oxford
dataset.

ingly simpler task. While we intend for Oxford to
be a type of baseline for our tests, INVESTOPEDIA

has more expansive definitions, which make com-
parisons using COMET difficult. For comparison,
our dataset has around three to four key points for
each definition, each, at minimum, the length of a
definition from the Oxford dataset. This discrep-
ancy exposes a limitation of the COMET evaluation
metric, despite its many advantages.

Concerning results of our special evaluation
schema which uses multiple gold standards, com-
pared to only using the first key takeaway, we see
an across the board improvement of each model by
a few comet points. This is expected, as taking a
max across multiple gold standards will inevitably
boost evaluation scores.

Finally, we compare our best results on IN-
VESTOPEDIA and the Oxford benchmark against
state-of-the-art models for the latter, all based
on fine-tuning. Specifically, we consider the ap-
proaches by Gadetsky et al. (2018) who released
the Oxford dataset, Ishiwatari et al. (2019) who
proposed a local-and-global context model based
on word embeddings, Reid et al. (2020) who lever-
aged BERT (Devlin et al., 2019) and combined it
with a variational inference framework, and Huang
et al. (2021) who propose a specificity-sensitive
approach with models based on T5 (Raffel et al.,
2020).

As Table 4 shows, we see that finetuning-based
approaches are able to outperform our k-shot and
zero-shot techniques based on prompting by a large
margin in terms of BLEU. We also see that the
overall best performance of the latter techniques
on INVESTOPEDIA remain on pair with Oxford
in terms of all metrics, suggesting that fine-tuning
could also lead to improved results in our dataset as
well. We think this could be interesting for specific
applications where generating accurate definitions

of financial terms is needed.

5 Conclusions

In summary, this paper advances our understanding
of the capabilities and limitations of Large Lan-
guage Models (LLMs) in specialized domains by
using definition modeling tasks as a lens into our
models abilities. We have established a framework
for testing LLMs in a zero-shot or few-shot setting
and demonstrated the utility of this approach with a
novel dataset of 14,000 term-definition pairs in the
financial domain - an area so far underrepresented
in such studies. Our empirical results, derived from
an array of LLMs, highlight the degree to which
these models can define financial terms accurately
and expansively. Notably, we observed consid-
erable performance enhancements when adding
in-context learning to smaller models, indicating
that they can approach the performance levels of
larger counterparts, such as GPT3.5. While our
study presents a significant step towards compre-
hending the nuances of LLMs in specialized areas
like finance, it also underscores the challenges that
remain. The performance gap witnessed on tasks
with shorter definitions, like those in the Oxford
dataset, reveals inherent limitations of the evalu-
ated models and evaluation metrics. We hope our
work inspires further research into the application
of definition modeling as a means to understand
and refine LLMs, particularly in critical fields such
as finance, law, and medicine.

Limitations

There are a few notable limitations of our work.
Firstly, the methods we used were primarily in-
context learning. We did not fine-tune any models,
although this was by intention. While our goal was
to ‘probe’ the models we chose, it does remain
a question whether our dataset can be used for
performance gains with training. We leave this
to future work.

Ethics Statement

Our main objective is to propose a new task to eval-
uate the abilities of LLMs, introducing a dataset
of financial term definition. One potential use-case
is to have a model generate fake definitions that
may mislead users that interact with an LLM when
deployed. By publicly releasing our data, we hope
to minimize such risks.
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